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1. INTRODUCTION

This document is produced by the Grid Data Management Work Package (WP2) of the European
DataGrid Project. It gives a detailed overview of the architecture and design issues being addressed by
WP2 in the course of its work.

ThisWork Package is developing middlewar e and documentation in a rapidly changing ar ea of
technology. Its output will evolve consider ably over the three year period covered by the Project.
The present document is based on work carried out over the firsg 6 months of the Project.
Although completein itself, and constituting a finished Project Deliver able, important additions
to the material presented here will be published as Addenda in due cour se.

The Work Package deals with some topics of a clearly delimited nature (e.g. optimised data transfer
techniques) but some other topics have a more diffuse or broader scope. Examples of the latter deal
with Query Optimisation or Security issues: these involve interaction with other Work Packages or, as
in the case of Security, involve Project wide considerations. As aresult there is an evident unevenness
of treatment imposed on us and sometimes this can affect the clarity of the discussion. For this, we
apologise in advance.

Some parts of this document directly reflect WP2' s contribution to the Architecture Task Force (ATF)
document [R2]. The ATF is the overal architectural authority of the Project, and its documents must
be consulted for any discussion of the broader context of WP2 within the DataGrid Project.

Nevertheless, we will attempt to give a short summary of WP2's main architectural emphases in the
following section.

1.1. APPLICATION AREA

Data Management is a very broad concept. In this document we will discuss the architectural issues it
presents in the EU DataGrid environment. We will define the scope of the Data Management Work
Package (WP2), the design of data management services proposed for the DataGrid and the API’s to
the middleware we will ddliver. This will be done in Chapters 36, based on a Use Case anaysis
presented in Chapter 2.

Before proceeding, we will give some background information to help the reader to understand our
priorities and main areas of emphasis.

1.1.1. WP2 Tasks

Because of the breadth of the issues involved, and the limited resources present in WP2 to address
them, a process of choice was applied and a set of Tasks extracted. The resource management of the
Work Package is partly based on these Tasks, and progress in the WP2 development effort depends to
a considerable extent upon the staffing and individual success of the WP2 Tasks. Each Task was
allocated approximately equd initial staffing resources.

The basic Task Areas of WP2 are:
Data Access & Migration
Data Replication
Meta Data M anagement
Secure & Transparent Data Access
Query Optimisation

The character and difficulty of the above Tasks vary considerably and this determines the nature and
degree of progress to be expected in the respective areas. Some Task areas have alarger existing body
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of work than others. Furthermore, there are dependencies between certain Tasks from an architectural
point of view. Simply put, once al thisis taken into account, the area of Data Access & Migration is
of lowest difficulty for WP2; the areas of Data Replication, Meta Data Management, and Secure &

Transparent Data Access are of medium difficulty; and that of Query Optimisation is of greatest

difficulty.

We therefore expect to make the most concrete progress in the areas of lowest and medium difficulty.
We note that Query Optimisation is the most “research oriented” and involves the most inter- Work
Package dependence, particularly with Work Package 1 where decisions on, for example, Job
Scheduling and job decomposition must be coordinated with those of data replication and availability.

1.1.2. Areas of Innovation
The principa areas within which WP2 has aready made important innovations or advances are:
Distributed Hierarchical Replica Catalog Design
SQL DataBase Service and Service Index Service for Meta Data Management
Security Models for Data Access
Query Optimisation
These areas are consequently treated in greater detail in the document than are some other areas.

1.2. DOCUMENT STRUCTURE

As a general rule, we have tried to improve readability by placing the more detailed material
towardsthe end of this document.

Chapter 1 (the present chapter) is an introduction, placing the work of WP2 in context with the rest of
the EU DataGrid Project’s middleware devel opments.

Chapter 2 describes use cases that have driven the architecture and design of the Data Management
Work Package.

Chapter 3 deals with the ar chitecture of the DataGrid, as described in the ATF document [R2] with a
special focus on Data Management; here we define the necessary terms to put Grid Data Management
into context.

Chapter 4 discusses general design issues for WP2 and Chapter 5 deals with mor e detailed design of
the identified components.

Chapter 6 gives a detailed description of the services WP2 will provide, including their API’s. (For
the moment these API’ s are shown schematically and afew are still undefined).

1.2.1. Planned Addenda
Although not an exhaustive list, planned future addenda to this document will cover:

More details of the WP2 API’s, including for example their error return codes. In the case of
missing API’ sreferred to above, these will be completed.

Detailed interactions of WP2 components, which are being developed in terms of UML
diagrams.

More details in the area of Query Optimisation, including that of Simulation.
More work on error recovery and robustness.
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1.4. TERMINOLOGY

Definitions

Glossary

ACL Access Control List; used to enable/disable kinds of access to resources.

AOD Analysis Object Data; used in HEP: information used in final analysis.

CE Computing Element; a Grid-enabled computing resource.

ESD Event Summary Data; used in HEP: information required for detailed
analysis and high-level reconstruction.

EDG European Data Grid; (project name is often written “ DataGrid”).

GDMP Grid Data Mirroring Package; a WP2 application.

GS Grid Scheduler; service responsible for selecting which Grid resources to

use for a given job.
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GGF
GIS
GMA
GS
HDF5

HEP
HSM

IMS

JDL
LFN

LRMS

PFN
RC
Replica
RM
SAN
SE
SRV
TAG
TFN
UML
VO

Global Grid Forum; see http://www.Gridforum.org/

Grid Information Service; (e.g. IMS or Globus MDS).

Grid Monitoring Architecture; monitoring architecture defined by GGF.
Grid Security Infrastructure (Globus Security mechanism).

Hierarchical Data Format by NCSA, version 5. Library and file format for
storing scientific data.

High Energy Physics.
Hierarchica Storage Manager. HSM software alows infrequently

accessed data to be migrated to less expensive offline storage
automatically.

Information and Monitoring System; catalogue and distribute static and
dynamic data about the Grid.

Job Description Language; to describe Grid jobs.

Logical File Name; A globally unique name to identify a specific file
which is mapped by the RC onto one or more PFNSs.

Local Resource Management System; controls resources within a CE e.g.
PBSor LSF.

Physical File Name; URL of actua physical instance of an LFN.
Replica Catalog; associates an LFN to one or more PFNSs.

A copy of afilethat is managed by the Grid middleware.

Replica Manager; provides severa servicesrelated to replicas.

Storage Area Network.

Storage Element; a Grid-enabled storage system.

Short for Server.

Event Selection Tag; used in HEP: used for fast event selection.
Transport File Name; URL to access agiven fileon a SE.

Unified Modeling Language; a notation for describing software systems.

Virtual Organization; A set of individuals defined by certain sharing rules
- .. members of a collaboration.

1.5. ACKNOWLEDGEMENTS

We would like to thank everyone in WP2 for their contributions. We had very useful discussions with
members of the ATF and of other work packages, especially WP1 and WPA4. The requirements from
WP8-10 were also very valuable inputs to this document. Specia thanks to our reviewers Frank Harris
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2. DATA MANAGEMENT USE CASES

We define use cases in the broad sense of generic usage scenarios for the DataGrid as a whole, from
which we deduce the requirements for data management. The two main categories are the generic Grid
interna use cases and the application use cases.

2.1. GENERIC GRID USE CASES

This section deals with the data management use cases resulting from the generic Grid model. Our
understanding of the detailed Grid architecture presented in the next chapter is based on this model.

2.1.1. Grid Computing and Storage Model

The DataGrid has two basic building blocks: StorageElements (SE) and ComputingElements (CE). A
ComputingElement is the interface to computing power. The scheduler can run Grid jobs only on CE
nodes. A Grid StorageElement (SE) is the generic name for any storage resource that includes a Grid
interface. Both the SE and CE are part of the Grid "fabric", as defined in the Anatomy of the Grid
paper [R6]. StorageElements may include large HSM systems like HPSS[R7], CASTOR[R4],
SATSTORE[R9], and ENSTORE [R5], and will aso include Grid managed disk pools. WP2 has to
provide means to transport and access data between SE and CE nodes.

CE and SE may be either local or remote to each other with respect to network connection. The
scheduler needs WP2 tools to be able to decide whether to replicate data necessary for job execution at
an SE local to the chosen CE or to access the data at a remote SE. If the job is to be run on a
computing element with an extremely high-speed network path to a remote SE, it may be more
efficient for the job to do a*“remote open” on the remote StorageElement than to create alocal replica.
Also, if ajob knows that it will only need 0.5 GBytes out of the middle of a 10 GB file, then it could
specify this as part of the job description, allowing a scheduler to determineif it is more efficient to do
a remote open or to create a local replica. Whether the data is local or remote will in fact be
completely transparent to the application.

2.1.2. Grid Monitoring and Scheduling

The DataGrid has of course more to it than just computing power and storage space. All the issues
about scheduling and monitoring the system are being addressed as well. There are two other
dedicated work packages for these tasks (WP1 and WP3). The ATF document [R2] describesin more
detail how these components intergperate. At this point we just mention that most of the services
provided by WP1 and WP3 need the storage of persistent Grid-Metadata which is aso in the domain
of WP2. Such metadata needs to be stored and will need to be accessible from throughout the Grid.

2.2. GRID APPLICATION USE CASES FOR HEP

We focus on High Energy Physics (HEP) use cases because of our more detailed understanding of
them and based on documents provided by the HEP community (see for example [R1, R19]). We have
worked closely with several experiments, particularly CMS.

Use cases from Biology and Earth Sciences will be incorporated in this document in a later
version.
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The following are three examples of activities that will be performed by the HEP experiments on the
Data Grid:

Testing of algorithms for data production. This activity will be performed by physicists in
order to tune the agorithms that they want to use to produce higher-level data types from
lower-level datatypes (e.g., AOD datafrom ESD data).

Data production. This activity will be performed by "data production managers', in order to
obtain a full converson of data from a lower-level format to a higher-level format.
Simulations of data production are aso within this category.

Analysis. This activity will be performed by physicists, in order to derive physics entities

from the data.
Input Data Set
Job Type User | Scheduled| known Size Spans Output
Datatypes
Testing Physicist No Yes Small Subset No Data Subset
Production | Manager Yes Yes All Events No Data Set
Analyss Physicist No Partidly ~ Small to All Yes Histogram/Tag

Table2.1: The table outlines the similarities and differences between the three types of activities

Production and testing activities will be performed massively in the earlier phases of the HEP
experiments, while analysis will become far more frequent and important over the lifetime of the
experiments.

The analysis process differs from the other types of activities in certain important ways. Unlike the
other activities, the output of the processis generaly private data (such as a histogram or a collection
of tags), which will not be managed by the Grid. The creation of summary statistical data like
histograms also implies the need for an aggregation step not present in the other processes. (The
aggregation step brings together the output data from the execution of agorithms on individual
events). More interestingly, it is harder to know what data an analysis job will access, and in some
cases the data accessed in asingle job will come from mare than just one datatype (e.g. AOD and ESD
together).

It is clear that analysis is the most complex process in terms of data management. To investigate
optimisation strategies for analysis is one of the most challenging tasks of WP2 and will be discussed
in Chapters 4 and 5.

In the following, each of these use cases is discussed in more detail. We try to deduce the resulting
requirements on Grid Data Management.

2.2.1. Algorithm Testing

Testing of algorithms and other application code in the Data Grid environment is one of the main
activities in the initial phase of the project. This activity will never lose importance as new code is
always being produced and needs testing. Tests can be simple or complicated, depending on what
needs to be tested. In general it can be assumed that for most testing the input data are known in
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advance, the run time will be short, and the output data is manageable (i.e. small). In terms of data
management design, this is the least chalenging activity: the input and output data need to be
accessible to the test programs in a transparent manner. The application need not know anything about
the physical location of the data on disk, the Grid should take care of this. Nevertheless, manual
triggering of replication and local data access should be possible.

2.2.2. Data Production

This activity is present from the very beginning in form of detector smulations. The “data challenges’
of the HEP experiments involve large scale simulations of the whole system, producing aready avast
amount of data at an early stage. The data volume of the simulations increases in time so that it
matches up with the real data volume by the time the detector comes online. The Grid Data
Management architecture should scale up to the expected data volumes (see [R1].

2.2.3. HEP Analysis

Physicists will analyze the events generated in the LHC by iteratively selecting more and more
restricted subsets, in order to isolate only the "interesting” events from the 10° events generated each
year by an experiment. Selection is performed by defining cut predicates, that are applied in sequence
to smaller and smaller sets of events.

A cut predicate p is applied to an input event st S and yields another set of events
S'={el S/ p(e) =trug asoutput. Cut predicates select those events which satisfy some properties
defined on values of data products belonging to the events.

In the earlier phases of the analysis, a cut predicate p(e) is evaluated using the values of TAG data
products. Data selection is specified by cut predicates defined as a set of constraints on certain TAG
atributes of the events in the set (e.g., boolean expressions containing "greater-than", "less-than" and
"equakto” operations are used to restrict the input data set). During TAG data analysis, physicists
typically "cut" the table data down to around 2% to 20% of its original size, until the selective power
of this data type is exhausted.

In the later phases of analysis, physicists exploit values of more "low level" data products, such as
AOD, ESD or even Raw data to perform further selection on the event set. In these phases, application
of a cut predicate on an input data set is performed by submitting a job to the Data Grid. A jobisa
user-supplied piece of code and a specification for an input data set and an output data set. The piece
of code executes the event selection based on the values in the input data set and produces the output
data set possibly combining or aggregating data values of the selected events.

Cut predicates are created by stepwise refinement. In each step a new version of the predicate is
applied to the input event set, then the output event set is examined to decide whether the current
version of the predicate is useful or not to continue the analysis.

2.2.3.1. Analysis Scenarios
We will be considering the following scenarios.

1. A physicist is doing HEP analysis and he/she has been working on the highest level data (TAG
data). These first phases of anaysis may be performed outside the Data Grid. Having completed
part of the analysis, the physicist then "runs out" of information at the TAG level and is forced to
access lower level data (AOD) to continue the analysis. The physicist starts to submit jobs to the
Grid. These jobs specify some AOD data products as input data set and define a cut predicate on
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the input data set, in the form of a piece of code. The location for the output data set is aso
specified by the job.

2. The physicist has continued analysis on AOD data until she has exhausted information at that level.
Therest is similar to scenario 1.

3. The physicist has continued analysis on ESD data until she has exhausted information from them.
Again therest is similar to scenario 1.

4. The fourth scenario does not follow from the previous one, but refers to a more general form of
physics analysis, in which the physicist performs analysis on multiple datatypes concurrently. This
type of anaysis is possible because objects in each datatype may contain pointers to objects in
other (lower level) datatypes, as well as to objects within the same datatype.

We are considering the case where a physicist user of the Data Grid is entering an analysis job to be
performed on a particular data set (either AOD, ESD, Raw Data, or a combination of them). The
output of the job could be considered to be TAG data, a some other data format which is transparent
to the Grid. To submit the job the user provides the following information:

1. Theinput data set. Thisis specified basicaly as a set of logicd filenames (LFNS).

2. A reference to a piece of code, which is to be executed on the input event set. The code
contains an algorithm which is an atomic function for each event, and thus needs to be
executed separately on the data for each event. (The code represents the computational job to
be performed. Note that we assume this code can be transported for compilation and
computation anywhere on the Grid.)

3. A physica location to deliver the output data to. This location may be specified automatically
by the local application, and could lie "outside" the Grid, i.e. on the physicist's local PC or on
a private server, which is not managed by the Grid. The output location may also be "inside"
the Grid and added to the Replica Catalog to be processed further by followup jobs.

4. (Optiond) processing hints, that help the Grid scheduler to find the best location where to run
the job and help the Grid optimisation services in their activities.

Note that the input data product set of ajob is actually a superset of the rea data product set that will
be accessed by the job.

2.2.3.2. Navigation

The input data set may not be completely known a priori (before the job starts execution) because the
job might have to access some data products based on the computation it has performed, and of course
this is only known at runtime. We refer to this as navigation between data products. In such cases
(primarily in analysis type jobs) it is impossible to know precisdly in advance what data the job will
access, or how long it islikely to run for.

The Data Management architecture should alow for an efficient analysis activity and should handle
the navigational aspect also. We have to provide the means to locate and access data available through
the Grid at application run time. This motivates much of the functionality of the ReplicaManager and
ReplicaCatalog services of our work package.
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3. ARCHITECTURE

3.1. DATA MANAGEMENT VIEW OF THE GRID ARCHITECTURE

Figure 3.1 shows the layered Grid architecture, as discussed in [R6]. The components are the same as
those defined in the ATF document [R2].

L ocal Application L ocal Database

Local Computing

Grid Grid Application Layer

Job Management Metadata Object to File
Management Mapper

Collective Services

Information & Grid Scheduler

Replica Catalog Interface

Monitoring

Replica Optimization

Underlying Grid Services

Computing Storage Authorisation,
Element Element Authentication
Services Services and Accounting
Grid
Fabric Fabric services
Resource Configuration Monitoring Node Fabric Storage
M anagement Management and Installation & M anagement
Fault Tolerance Management

Figure 3.1: Grid Layered Architecture, WP2-centric view. The shaded items are completely in the
domain of WP2 with the exception of Authorization, Authentication and Accounting, where only
specific issues are handled (hence the lighter shading).

The Grid middleware that we are talking about in this document lives in the two lower Grid layers of
Figure 3.1. It is nevertheless important to describe the other layers for the broader context of our
services. The following is a description of the different services provided within each layer of the

architecture. We have marked “WP2” those services provided by the Data Management Work
Package.
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3.2. LOCAL APPLICATIONS

The top layer of the architecture exists outside of the Grid infrastructure. The human users of the Grid
will al be accessing the Grid through this layer, consisting of local desktop machines or servers. Data
needs to be exported to this layer upon request, usualy in the framework of data analysis where the
users want to work with a small subset of the data available in the Grid localy. It is essentia for
interactive usage that this layer has efficient bindings to the Grid layers. The requirements for security
are aso driven by the heterogeneous environment of local users.

3.3. GRID APPLICATION LAYER

The applications which reside in the "Grid Application Layer" act as a means of interface and
coordination between the local applications. The components we list below are just possible modules
that a HEP experiment or any other Virtua Organization (VO) might want to provide. There may be
less or more, depending on the needs of the VO. In our list we tried to incorporate those which are
most likely to exist so that we can think about their interaction with our Grid middlieware. Please be
reminded that this is an evolving system: new application middleware requirements will need to be
incorporated into the Data Management architecture if necessary.

3.3.1. Job Management

Each application will most likely have some sort of internad Job Management system, making
decisions regarding which jobs are submitted to the Grid and at which time. Such decisions would be
made based on application quotas, user priorities, expected run-times, and so on. (The idea here would
be to stop "small time users' from unwittingly submitting very large jobs to the Grid, which drain its
resources unnecessarily.) The Job Management system would a so be responsible for scheduling large
production type jobs. However, much of the responsibility could go directly to the Grid Scheduler.

3.3.2. Data Management (WP2)

Databases and data stores are used to store data persistently in a Data Grid. Several different data and
file formats will exist and thus a heterogeneous Grid-middleware solution needs to be provided.
Particular database implementations are both the choice and responsibility of individual virtua
organizations, i.e. they will not be managed as part of Collective Grid Services.

Once a data store needs to be distributed and replicated, data replication features have to be
considered. If a single, homogeneous data store existed which provided efficient and secure data
replication over the wide-area network, such replication tools might be preferable. However, current
storage technology is not sufficient (e.g. Objectivity's Data Replication Option is not optimal; ROOT
does not provide replication at al; Oracle still needs to be evauated), so high level replication tools
have to be provided by the Grid middleware. Since a file is the lowest level of granularity dealt with
by the Grid middleware, afile replication tool is required.

In general, successfully replicating a file from one storage location to another one consists of the
following steps:

pre-processing: This step is specific to the file format (and thus to the data store) and might
even be skipped in certain cases. This step prepares the destination site for replication, for
example by creating an Objectivity federation at the destination site or introducing new
schema in a database management system so that the files that are to be replicated can be
integrated easily into the existing database.
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actual file transfer: This has to be done in a secure and efficient fashion; fast file transfer
mechanisms are required.

post-processing. The post-processing step is again file type specific and might not be needed
for al file types. In the case of Objectivity, one post-processing step is to attach a database file
to alocal federation and thus insert it into an internal file catalog.

insert the file entry into a replica catalog: This step aso includes the assignment of logical
and physical filenamesto afile (replica). This step makes the file (replica) visible to the Grid.
(more details on replica cataogs, logical and physical filenames can be found in Chapter 4).

A generic file replication software tool called Grid Data Mirroring Package (GDMP) is provided by
WP2 and implements all the above steps using severa underlying Grid services. For further details see
Chapter 4. It is important to point out that several different data stores can be supported but storage
system dependent plug-ins have to be provided for the pre- and post-processing steps.

3.3.3. Object to File Mapping

The high level experiment's data view contains neither the concept of files nor the concept of data
replication: al objects are supposed to smply "exist" without regard to how they are stored and how
many replicas exist [R11]. Files and replication appear only at lower layers of abgtraction as
implementation mechanisms for the experiment's object view. A single file will generally contain
many objects. This is necessary because the number of objects is so large (of the order of 10” to 10™
for amodern physics experiment). An object to file mapping step is required and needs to be provided
by the persistency layer of the individua experiment. Thus, Grid middleware tools only deal with files
and not with individual objectsin afile.

3.3.4. Metadata Management

In addition to the actual data to be stored persistently (event data in case of High Energy Physics),
experiment specific metadata about files might need to be stored. The metadata may contain
information about logical file sets (e.g. a particular set of files contains certain physics objects etc.). In
principle, severa files might be part of severa sets or collections. In our current understanding such
VO-specific metadata is managed by the VO's software infrastructure and not by DataGrid
middleware tools.

3.4. THE COLLECTIVE SERVICES LAYER

The Collective Layer represents the set of high level (but generic) Grid services offered to Grid
enabled applications. The services provided in this layer can be roughly separated into three areas,
information (monitoring) management, data management, and computation management,
corresponding to Work Packages 3, 2 and 1 respectively. In Figure 3.1 we label these components
according to the names of the mgor services these work packages will provide: Information and
Monitoring, Replica Manager and Grid Scheduler.

We focus our discussion in this document on the data management issues. See the corresponding
documents of WP1 and WP3 for more details on the Scheduler and Monitoring respectively.
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3.4.1. Replica Manager (WP2)

Our detailed design for replication is presented in Chapter 5. At this point we just mention the two
major components of the Replica Manager in the Collective Layer: the interface to the Replica Catalog
and the interfaces to replica selection/optimization and other high-leve replication services.

3.5. THEUNDERLYING GRID SERVICES LAYER

The Grid services on the next-to-bottom level of the diagram represent the basic and essentia services
required in a Grid environment. These services include the ability to schedule jobs on remote clusters,
to transfer files efficiently between sites, to pass messages between processes, and to control
authorisation and access to files and services. One can view these services as Grid versions of standard
LAN services, such as those offered by the UNIX operating system.

Our work package will provide some of these services. (More detailed design of each of our servicesis
discussed in the next two chapters).

3.5.1. Computing Element Service

Under this generic name we collect al services that enable communication with a Grid Computing
Element. This component is responsible for submitting jobs to the Fabric Layer and interfacing them
to the Grid Scheduler. WP1 and WP4 will provide these services.

3.5.2. Storage Element Service

Thisis the interfacing service to the Storage Element. We will provide a data transfer interface to the
Storage Element (the FileCopier service).

3.5.3. Replica Catalog (WP2)

The Replica Catalog stores information about physical files on any given Storage Element. Thisis one
of the services which will be provided by our work package.

3.5.4. SQLDatabase Service (WP2)

Thisis the service we plan to provide in order to store Grid Metadata. This service may be used by any
other Grid middleware to store persistent metadata.

3.5.5. Service Index (WP2)

The Service Index stores information on Grid services using the SQLDatabase Service to store the
metadata. Thisis also provided by WP2.

3.5.6. Security - Authorisation, Authentication and Accounting (WP2)

All the services concerning security are schematically indicated by the box “Authorisation,
Authentication and Accounting”. We focus only on the aspect of data security, which is one of the
tasks of WP2. The general security issues of the whole DataGrid Project are much wider than WP2
can address.

3.6. FABRIC SERVICES LAYER

Fabric Services are the low-level layer that the Grid middleware actually runs on. We refer the reader
for further discussion of Fabric Services to the ATF document [R2] and to the detailed design
documents of WP4.
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4. DESIGN ISSUES

4.1. INTRODUCTION

In this chapter we describe the mgjor design issues of WP2, leading to the detailed designs we present
in the following chapter. This chapter deals with the following:

Data Granularity

Files are the data units we decide to dea with for now. (We understand that Grid Object management
is on the wish list of some applications and we are investigating how to enable Grid Object
management in our Optimisation task).

In the current WP2 context, data is managed in units of named files. In the future we will aso
introduce collections of files. In the short term, the mapping of files to collections is defined by the
Grid applications, not by the Grid middleware.

Replication System

One of the most important DataGrid challenges is to provide convenient and efficient global file
access to users. This goa can be achieved by transparently scheduling and optimising 1/0O across the
Grid, creating data replicas where appropriate.

The replication system includes all services necessary to provide consistent data replication across
DataGrid nodes. The services provided are the Replica Catalog and Replica Manager. More services
may evolve in the future, like Replica Selection and a Consistency Service.

M etadata Storage

We describe how we intend to handle persistent Grid Metadata storage to be used by WP2 as well as
other Grid Servicesif they desire.

Grid metadata congists of data on the Grid internals, like Grid layout information, monitoring, past
usage statistics, user information, etc. In order to manage the metadata gathered by the Grid, we have
the SQL Database service that can be used as a persistent data store by any other Grid service. An
example of aWP2 service using it to provide information on existing Grid services is the Servicelndex
service.

Security

In our limited context of file access control we have a design for security in mind. The full security
issue of the Grid is beyond the context of WP2. We do investigate interfacing Grid security to an HSM
and to an SQL data base service.

Optimisation

Optimising data access is an active research topic. We investigate future directions for Grid Data
Management for an integrated optimised data query and access. We do talk about objects and files,
discuss a possible job description language and give insights into query optimisation. The aim is to
collaborate with application devel opers to enhance data access.
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4.2. FILE REPLICATION

With respect to replication, there are two types of filesin a Data Grid: “master” filesand “replicas’.
A replica is any copy of afile other than the master. The master file is owned and managed by the
creator of the file, but the replicas are managed by the Grid (middieware). For example, a Storage
Element may delete unused replicas to make space available for new replicas without notifying the
owner of the file. The use of replicas is transparent to users; they are created as needed by the Grid
middleware in order to improve overall performance of jobs. However, sites can explicitly ask for the
creation of replicas localy. Initially, replica files are by definition read-only; read-write implies the
creation of a new master file. This is to avoid the extremely difficult synchronization problem of
allowing users to write to multiple replicas of the same file. Consistency mechanisms (e.g. for
guaranteeing that when a master file is removed, al its replicas are also removed) are described further
in Chapter 5. Additionally, te use of various speciad purpose consistency models for updating a
replica and propagating the changes to the master and all other replicas are being investigated. Access
control mechanisms for both master and replica files are aso described in Chapter 5. Master files
would typically be stored on a "reliable” system, (i.e. backed up), whereas a replica does not require
backup.

A simple example of replica usage is as follows: to improve the performance of a DataGrid job to be
run a site A, data in permanent storage at site B is copied to site A. This data may then be used by
subsequent jobs at site A, or by jobs at site C, which has a better network connection to site A than site
B. For this reason, the data should be kept at site A as long as possible. However, there is no need to
store this file permanently at site A, because the file can aways be retrieved from site B. The
ReplicaManager, whose API is given in Chapter 6, keeps track of al replica data so that the replica
selection service can select the optimal physical file to use for a given job, or to request the creation of
anew replica. Replica usage can be thought of as a type of long-term cache, where the data remainsin
the cache for use by future jobs until the cache is full, in which case the least recently used files are
removed, subject to their "lifetime" attributes.

Both master and replica file include the notion of a "lifetime". Master files may be given a finite
lifetime so that they can be deleted automatically by the system. Replicas may always be deleted by
the system, but they may also be assigned a lifetime so that they are not deleted too soon. A replica
lifetime might be set manually by a user who knows the same file will be used for a series of jobs, or it
could be set by the scheduler.

Replicas are currently defined in terms of filesand not objects. The initia focus is on the movement
of files, without specific regard for what the files contain. We realize that many users are mainly
interested in objects. However, we believe that there are well defined mechanisms to map objects to
files for both Objectivity and ROOT, and that all of this will be completely transparent to the
applications. However, achieving this transparency will require close interaction with the applications
data model. In the case of most other commercial database products, it appears that thisis difficult to
do efficiently, and requires additiona study. Once the handling of files is well understood, further
requirements analysis can extend or build on the replication paradigm to apply it to the movement of
objects, structured data (such as HDF5), and segments of data from relational databases, object-
oriented databases, hierarchical databases, or application-specific data management systems.

4.2.1. File and Replica Identifiers

Since a physical file can have several identical instances (replicas), a naming convention is required
that assigns alogical file name to a set of replicas (physical file names). A logical file name (LFN) is
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used to uniquely identify a set of identica physica files at different storage locations
(StorageElements). Each physical file has a unique physical file name (PFN).

A logical file can exist as multiple physical replicas, with each replica potentially being kept at a
different SE. A protocol-specific file name - the Transport File Name (TFN) - can be derived from the
physical file name. This mechanism alows multiple protocols to be supported, yet hides the protocol
from the applications. Given the world-wide scope of the Grid, it is essential to use LFNs and PFNs
which are globally unique. In this context we require that no two LFNs point to the same PFN, i.e. a
physical file cannot have more than one logical name. This is a purely technical requirement that
makes it easier for us to implement the basic functionality of the system; this can be relaxed at a later
timeif necessary.

Each virtua organization, group or individual should have as much control as possible over the
structure and conventions used within their namespace. The naming scheme should be intuitive and
flexible.

4.2.2. Logical File Name (LFN)

A logical file is identified by a globaly unique string conforming to some well defined syntax. We
propose to adopt a URL-like syntax [RFC 2396] because it is well established as the open standard for
convenient globally unique naming on the Internet.

A logica file name consists of the string "Ifn://" followed by a virtual hostname, followed by a /"
separator, after which any arbitrarily shaped application specific string can be appended. A virtual
organisation may decide to use one or more such hostnames.

Here are some examples for conformant logical file names:
Ifn://eo.esa.int/anything+:you* like.tex
Ifn://atlas.cern.ch/analysi /higgs/cand099.dat
Ifn://dice.cern.ch/Grid/sim/ev?2date=20001231& run=001& ev=123

The LFN "hostname" does not tell where afile is physically stored, nor does it tell how the file can be
accessed. The virtual hostname syntax facilitates easy and scalable world-wide cross-organisationa
name space partitioning. It is included to show that all namespaces below it belong to (and are
managed by) the owner of the hosthame. To assure uniqueness, it is recommended that the virtual
hostname be also present in DNS.

4.2.3. Physical File Name (PFN)

A physical file name is used to uniquely identify afile on a given SE. We propose to adopt the URL
syntax [RFC 2396] because it is awell established and flexible standard. A physical file name consists
of the string "pfn://" followed by the hosthame of the SE, asregistered in the DNS, followed by a"/"
separator, after which any directory path can be appended.

Here are some conforming examples:
pfn://cms.cern.ch/Grid/dag/triggers/2001/challenge02/ev001
pfn://kinky.cern.ch/anything/you/like.tex
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pfn://castorO01.cern.ch/whatever/ev001

pfn://pcrd25.cern.ch/mydat

4.2.4. Transport File Name (TFN)

A transport file name is used to identify how a file is to be accessed. The name contains sufficient
information to allow aclient to start retrieving the file stream.

The TFN allows muttiple protocols to be used to access asingle PFN. It is envisioned that the user will
normally not use the TEN directly, as the trandation from the PFN will be handled by the middieware.
A TEN may only be meaningful locally. The TFEN is more than just the PFN and a protocol since,
depending on the protocol, complicated trand ation mechanisms may be involved.

A transport file nameis a URL, with a set of supported protocols (e.g. Gridftp, ftp, http, rfio and file).
URL encoding for commands and parameters within a transport file name is not alowed. As for the
PFN case, the TFN hostname which follows the protocol specifier isthat of the corresponding SE.

Here are some conforming examples:
http://cms001.cern.ch/Grid/dag/triggers-2001-challenge02-ev001
Gridftp://kinky.cern.ch/anything/you/like/or/may/not/like.tex
file:///afs/cern.ch/user/h/hoschek/data/ev001
ftp://castor001.cern.ch/whatever/ev001
file:///castor/whatever/ev001
rfio://wolfy.cern.ch/datastore/file.dat

Here are some nonconforming examples (they have extra parameters encoded):
http://cms.cern.ch/get?year=2001& kind=challenge02& name=v001
http://cms.cern.ch/put?year=2001& kind=challenge02& name=v001

Note that LFN, PFN and TFN are unambiguoudly distinguishable by their scheme prefix.

4.2.5. Replica Manager

The ReplicaManager (RM) has knowledge about file replicas (through the ReplicaCatalog service) and
is responsible for consistent replica creation, moving and deletion. In addition, since al replicated files
need to appear in a global name space and need © be uniquely identified, the ReplicaManager is
responsible for inserting logical and physica file information into the ReplicaCatal og.

4.2.5.1. File Transfer

The RM requires a FileCopier to efficiently and securely copy files from one Grid location to another,
similar to file transfer services such as the conventional FTP service. Thisis alow level service with a
simple interface and no smart behavior.

We plan to use GridFTP as the underlying transport.
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4.2.5.2. Policies

Certain policy issues are handled by the ReplicaManager. For instance, before the RM can create a
new replica a a given ste it must check the loca policy of that site. For example, does this
person/group have write access? Is their quota full?

4.2.5.3. Replica Consistency

Maintaining consistency among replicas in different sites and storage locations is a task for a
Consistency Service (to be defined) on top of the ReplicaManager. The Consistency Service will deal
with updates of replicas and guarantee certain levels of consistency. Note that since most of the datais
read-only, the consistency service is only applicable to data that is modified after it has been made
available to the Grid.

Preliminary models for replica consistency can be found in [R18]. More research is necessary here
which will then lead to a detailed design.

4.2.5.4. Synchronization

The RM is aso responsible for keeping the RC data synchronized with the actual files on the SE.
Normally the SE should inform the RM when it deletes a file. However it is possible that the file is
removed without the RM’s knowledge. To handle this problem, the RM will periodically ask the SE if
the replicais still there.

In contrast to a database management system (DBMS) where the DBMS has full control over al read
and write access to data, the Replica Manager does not have control over filesin the SE. Thus, severa
problems and inconsistencies can occur and detailed policies to dea with possible inconsistencies
have to be worked out. In addition to periodically checking files for availability (which might be
difficult since files may be a tape rather than disk locations), if a client request for a local file
(registered in the RC) fails, the corresponding file entry can be deleted from the RC.

4.2.6. Replica Selection & Cost Estimation

A replica selection service selects the "best" physical file based on a given logica filename and a
storage destination. Several performance parameters (like network speed, current network throughput,
load on data servers, input queues on data server etc.) have to be included into the metric for selecting
the "best” replica. Since currently no database management system is providing such a service, further
investigation and research on our part is necessary. Only future versions of this document will

therefore contain a detailed design for Replica Selection. Collaboration with the other work packages
on thisissue, as well as further input from the applications, is needed.

4.2.6.1. Cost Estimation

The ReplicaManager is responsible for computing the cost estimation for replica creation. Information
for cost estimates, such as network bandwidth, staging times and SE load indicators, are gathered from
the IMS.
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4.3. SECURITY

4.3.1. Introduction

Systems requiring protection of information are encountered every day spanning a wide range of needs
for organizationa and personal privacy. However, a generic and deep discussion on computer security
(understood as the set of techniques that control who may use or modify the computer or the
information contained in it) is out of the scope of this document. Instead, we will describe the basic
principles related to information protection and then propose some security enhancements for some
components that have been defined within our architecture.

Historically, security speciaists [R22] have found it useful to dace potential security violations in
three categories.

Unauthorized information use: an unauthorized person is able to read and take advantage of
information stored in the computer. This category of concern sometimes extends to "traffic
analysis," in which the intruder observes only the patterns of information use and from those
patterns can infer some information content. It also includes unauthorized use of a proprietary
program.

Unauthorized information modification: an unauthorized person is able to make changes in
stored information - a form of sabotage. Note that this kind of violation does not require that
the intruder see the information he has changed.

Unauthorized denia of use: an intruder can prevent an authorized user from referring to or
modifying information, even though the intruder may not be able to refer to or modify the
information. Causing a system "crash,” disrupting a scheduling algorithm, or firing a bullet
into a computer are examples of denia of use. Thisis another form of sabotage.

Also known as “countermeasures’, there is a basic set of defenses such as authentication,
authorization, cryptography, and intrusion detection. Authentication is the process to verify the
identity of a person (or other agent externa to the protection system) making a request and
authorization is the process to grant a principal access to certain information.

4.3.2. Cryptography

We present here an overview of the aspects of interest for systems security. For a more detailed
discussion see [R23, R24]. Basicaly, encryption is encoding a message to hide its meaning and is a
valuable mechanism that can be used to provide:

Authentication: Can authenticate the identity of users, transactions, and systems.

Protection of messages. Can protect the secrecy of a message and prevent illegal modification.
Cannot protect against destruction of the message.

Protection of software and data: Can protect the confidentiaity of them although not avoid
their destruction. For example, passwords can be encrypted.

Digital signatures. Can authenticate the origin of a message.

Nonrepudiation: A user that signed or otherwise authenticated a document using cryptography
cannot deny having sent it.
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We can classify cipher systems according to three independent aspects [R23]:

Number of keys used: symmetric (one key) and asymmetric (encryption and decryption keys,
these are the public-key systems). Neither approach is the best for all cases.

Type of encrypting operations. Symmetric systems use substitution and transposition stages.
Substitutions just replace a bit or character for another. Transpositions rearrange bits or
characters in the data. Product ciphers are combinations of substitutions and transpositions.
Public key systems are based on invertible mathematical functions.

The way the plaintext is encrypted: block and stream ciphers. In ablock cipher a block of data
is transformed, using a key, into ablock of ciphertext. In a stream cipher a stream of key bits
is used to encode a stream of data one bit or character at a time. Block ciphers are more
appropriate for use within computers, while stream ciphers are seen mostly in
communications. Block ciphers can smulate stream ciphers and we consider only this type
here.

In the context of our work we will be interested in public key systems since these are widely used and
because Grid software based on Globus uses this approach for data encryption. Public key systems use
two keys, one of which is public and the other secret. The approach is based on the infeasibility of
determining the decryption key given the algorithm and the public key. Instead of permutations and
substitutions these algorithms use properties of mathematical functions. In particular, they use the
theory of NP functions, those for which there is no polynomial time agorithm.

The public keys are normally registered with a Certification Authority (CA). This authority distributes
certificates, which are public keys with the signature of the CA. There are authentication and attribute
certificates. Attribute certificates assert that certain properties are true of the owner of some
authentication certificate. Attribute certificates are used in SSL and other protocols. A certification
authority is not a problem for an ingtitution but it is difficult to find CA’s that are acceptable to alarge
number of institutions across states and countries. Another problem is that encryption isslow. Thereis
no way to improve the security of a PK system by increasing the size of the key because they depend
on how hard it isto solve a mathematical problem.

4.3.3. Security Models

Because of the importance of creating a suitable security system for the end-users, it is important that
designers of such systems follow the basis of generalized models with well known properties. We will
briefly describe here some of the proposed models. Models can be discretionary or mandatory. In a
discretionary model, holders of rights can be alowed to transfer them at their discretion. In a
mandatory model only designated roles are alowed to grant rights and users cannot transfer them.

4.3.3.1. Access Matrix

The model defines a set of subjects (requesting entities), a set of security objects (requested entities),
and a set of rights or access types (the way in which the object can be accessed). In the origina matrix
of Lampson [R27], there was the concept of owner, which as we have discussed in the last chapter, isa
violation of the principle of separation of duty. There is also the concept of "controller”, with special
rights. The Lampson matrix include operations to modify the matrix and to alow propagation of
rights. These are "administrative" operations because they would normally be used by a security
administrator. An implementation of the access matrix must have a way to intercept user or program
requests and compare the request to the access matrix to decide access.
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4.3.3.2. The Bell-Lapadula Model

The Bell-LaPadula Model (BLM), dso caled the multi-level model, was proposed by Bell and
LaPadula [R28] and it supports hierarchical access control. In this model based also on an access
matrix subjects and objects are partitioned into different security levels and a subject can only access
objects at certain levels determined by his security level. The Bell-LaPadula model supports
mandatory access control by determining the access rights from the security levels associated with
subjects and objects. It also supports discretionary access control by checking access rights from an
access matrix.

4.3.3.3. Role-Based Access Control (RBAC)

RBAC can also be seen as a variation of the Access Matrix model [R29] where subjects can only be
roles. RBAC is aform of mandatory access control, but not based on multilevel security requirements.
Rather, access control decisions are determined by the roles individua users take on as part of an
organization. In other words, rights and permissions are assigned to roles rather than to individual
users and they acquire these rights and permissions by virtue of being assigned membership in
appropriate roles. Mgjor advantages to RBAC are flexibility and low overhead. Flexibility alows for
the enforcement of least privilege, conflict between duties, dynamic and/or static separation of duties.
It alows for minima effort in alowing and revoking the user's role based on job and responsibilities
and decentralization of administrative tasks is also made possible.

4.4, OPTIMISATION

We define Grid Query Optimisation (GQO) as the optimisation of the time and/or cost of execution of
a Grid job submitted by a user while performing analysis. In the following the terms job and query
will be used interchangeably.

We can consider query optimisation from various points of view:

User oriented optimisation (high performance computing). Each physicist would like to
perform analysis on HEP events as fast as possible and possibly minimizing the cost for
execution of jobs that she submits to the Data Grid. The optima situation for a physicist
would be being the only user of the Data Grid, thus having al the Data Grid resources
personally available.

Grid oriented optimisation (high throughput computing). Grid designers have a different
perspective on the Data Grid. Their task is to define optimisation services that "make happy"
all the users of the Data Grid, without favouring any of them (of course, different categories of
users can be given different priority of use of the Data Grid). Thus, collective optimisation
should be taken into consideration, trying to maximize exploitation of Grid resources while
maintai ning acceptable time/cost for execution of single physicist jobs.

Siteoriented optimisation. Administrators of Data Grid sites would like to decide upon local

policies of use for resources at that site. These policies will influence the usage of the site by
Grid and non-Grid jobs.

The optimisation services provided by the Data Grid should be designed to take into consideration all
three of these perspectives and the "right" trade-off between them. We can consider two kinds of
optimisation:
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Short-term optimisation of user queries. This optimisation can be activated whenever a
guery is submitted to the Data Grid and aims at minimizing the execution time and cost of the
job. Optimisation is based on the information specified by the job: input data set and job code.
We identify some possibilities for optimisation:

o Job decomposition. A job usualy operates on a set of events independently. This
means that a job can be decomposed as a set of sub jobs, whose code corresponds to
the code (or part of the code) of the main job, and an aggregation job, that executes on
the output data set of the sub jobs. Job decomposition can be performed on the basis
of where the input data products are stored in the Data Grid, or on the structure of the
job code.

o Job execution time estimation. This information could be exploited by the user in
order to decide whether or not to submit a certain job to the Data Grid, according to
how long she is willing to wait for job completion. Execution time execution can be
based on both the location of data and/or code execution time estimation for each of
the sub jobs that compose the job.

o (Sub)Job dispatching. Where to dispatch a (sub)job is another important issue to take
into consideration for GQO. The optimum location for the execution of a job depends
on the location and current status of both the required data and the required
computation resources. A trade-off between data optimisation and computation
optimisation is important to assure Grid oriented optimisation. As far as data
optimisation is concerned, there are two important aspects

= Data sdection. The same input data product for a job could be replicated in
severad files, placed in different locations on the Grid. The most convenient
file copy should be sdlected for use by the job.

= Data relocation. The relocation and replication of files inside and between
sites must be performed in an optima manner.

o During execution optimisation. When a job requests a set of data that is not available
on the site where the job is running, a decision has to be taken on how to optimally
access the missing data. Therefore, data selection and relocation could also be
performed during the execution of the job, to meet the optimisation needs that arise
due to unforeseen data requirements.

L ong-term optimisation of use of Data Grid resources As previoudy stated, the optimised
use of Grid resources improves the overall performance of the Data Grid and thus, on average,
the performance of jobs submitted by single physicists. Long-term optimisation can be based
on statistics on the past use of the Data Grid and forecasts of its future use.

o Replication. A posshility of long-term optimisation is to set up a suitable replication
policy for files stored in the various sites of the Data Grid. For example, suppose that
several jobs submitted to the Data Grid from sites placed in the same area have been
accessing much the same set of files. Then, an immediate optimisation is to replicate
thosefiles in a Site easily accessible from the sites in that area. Analogoudly, if a set of
jobs to be executed in the future in a certain area of the Data Grid is going to use a
smilar set of files, these files could be replicated in advance and stored in sites
included in that area.
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Reclustering. Input data products of a job might be sparsely spread over severa large files.
Reclustering them into a smaller set of files prior to their analysis could improve execution time of the
job, and more fully exploit the content of the files. A possibility is to set up some reclustering policy

for data products. For example, if several jobs are going to access amost the same set of data products
in the future, it could be convenient to store these data into the same file (or a set of files).
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5. DETAILED DESIGNS

5.1. THE DATA REPLICATION SYSTEM

The Data Replication System is composed of severa Grid Services, such as the ReplicaCatalog and
ReplicaManager. We will try to discuss the System in the context of the full DataGrid design, not just
WP2. We try to identify each necessary service and put them into detailed context, like which node
they can be run on, how they interoperate etc.

The Data Replication Systemneeds severa capabilities, including:

Maintaining a consistent and scalable Replica Catalog. The ReplicaCatalog service lists all
files (logical and physica filenames) which are available in the Grid.

Replication of files: this deals with the actua file transfer and the integration of logica and
physical filenames into a Replica Catalog. We call this the ReplicaM anager service.

Synchronization of replicas (Consistency Service).
Replica selection : when to create new replicas.

Hle-level access control.

Storage of replica metadata such as master flag, ACLSs, lifetime, file type and file size.

Our main focus is on file replication. File vs. object replication is discussed in greater detail in the
section on optimisation.

5.1.1. Replica Catalog

The main purpose of the ReplicaCatalog is to provide a mapping of alogical file name to one or more
physical file names. For each logica file name, additiona file metainformation (file attributes) can be
added. Furthermore, the location of a replica can then be used, together with other information

services, to obtain the cost for accessing single replicas and creating replicas. This service thus enables
storage and retrieval of information about logical files and physical files, as well as associated

metadata (such as file size, timestamp, owner, file type, etc.). The ReplicaCatalog service can be seen
as the database backend tier of the replica manager. A replica catalog contains zero or more logical

files, and each logicd file contains zero or more physical files. The catalog imposes structure on top of
physica files, but does not create, delete or read physica files. It can be implemented on top of an
RDBMS, ODBMS or LDAP as backend.

A ubiquitous remote method invocation protocol (using XML over https or URL encoded https)
encapsulates and shields client applications from the details of the underlying backend storage
technology. Thus, different backend implementations of the ReplicaCatalog APl (eg using a
RDBMS, ODBMS or LDAP) can be used without introducing interoperability problems.

There are severa ways to implement a replica catalog based on how one decides to distribute or
partition replica catalog data. We can identify three sample catalog distribution options:

Central replica catalog service: A centralized service and thus a central data store contains
al cataog information and is contacted for each LFN to PFN lookup. Pros: No
synchronization problem, because all files are kept in one catalog. Easy to administer. Cons:
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Not scalable, potentia bottleneck due to WAN latency and high traffic. Single point of failure.
Remote organi zations are dependent on central organization for administration.

Replicated catalog service: Each site has areplica catalog that keeps alist of al locally and
remotely available files. All catalogs store identical data and are kept consistent under update.
Pros. Scalable (assuming low update rate) because load is spread among multiple catalog
instances. Access is localized, hence latency minimized. No single point of failure. Cons. Hard
to adminigter, to implement efficiently, and to synchronize. Potentialy stale data due to lazy
synchronization semantics.

Partitioned catalog service: Each site has a replica catalog that contains a list of local files
only. Catalogs are independent and autonomous, but linked together through a hierarchy or
graph. Pros: Scalable because load is spread among multiple catalog instances. Access is
localized, hence latency minimized. There is no single point of failure. Local and independent
adminigtration. Cons: Must traverse hierarchy to locate data. Potentially complex update
propagation. Potentially stale data due to lazy synchronization semantics.

We believe a variant of the third option (partitioned catal og service) maps best to the requirements of a
replica catalog. The replica catalog design we propose is a hierarchical system with interconnected
parent and child catalogs, forming a distributed tree or graph (see Figure 5.1) which can be traversed.
We assume that replica catalog sites do not need to be synchronized immediately, but only within a
specified timeframe of, for example, several minutes (i.e.: relaxed consistency model). We distinguish
non-leaf Replica Catalogs and leaf Replica Catal ogs as follows:

A leaf Replica Catalog stores logica file name (LFN) to physical file name (PFN) mappings
(one-to-many) for each locally stored physica replica, plus file attributes for its LFNs and
PFNs. File attributes include file sze, time-step, check sum, creator, master/replica, owner,
file type etc.

A non-leaf Replica Catalog stores logical file name (LFN) to Replica Catalog URL mappings
(one-to-many) for each LFN with at least one physical replicain its subtree.

In other words, non-leaf replica catalogs do not have physical file information but only store the URL
of child replica catalogs. A non-leaf catalog redirects requests for a physical filename to children,
which may in turn propagate the request until all physical file information is found. The additional
redirection lookup steps are transparent to the end user. Note that preliminary work on replica catalog
redirection has been presented in [R17]. Each replica catalog maintains a local and autonomous view
of its subtree. Whether leaf or not, al replica catalogs speak the same lookup protocol and provide
exactly the same lookup API. Consequently, any hierarchical or graph-oriented layering is possible.
One possible structure is the following. A leaf replica catalog is co-located with each StorageElement.
We refer to these catalogs as StorageElement-ReplicaCatal ogs (SE-RC). If a site has multiple SEs they
may choose to have a non-leaf replica catalog which acts as a site RC whereas small sites may choose
to omit asite RC, and only use SE-RCs (see Figure 5.1).

To summarize:

Each SE is paired with aleaf RC (SE-RC) that contains al the LFN to PFN mappings for files
stored in that SE only. In other words, there is one entry for each PFN on that SE.

At the top of the tree isacatalog with dl LFNsfor agiven Virtual Organization.
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Thereis an arbitrary number of non-leaf RC's which contain pointersto leaf RCs or other non-
leaf RC's. In other words, one can build atree of ReplicaCatalogs, with a set of SE-RCs at the
bottom of the tree. For example, a site with multiple SE's might have a non-leaf RC for all
LFN's at that Site (see Figure 5.1)).

Thetop level RC will be heavily used and thus needs to be replicated for two classical reasons:
availability - one server could be down and thus the top level information is not accessible

performance gain for response to read requests (load balancing)

Key points:

+ Can query any level in the
hierarchy with the same API

+ All updates are performed at the
SE-RC level, and automatically
propagated up the tree

+ Queries are automatically
redirected up the tree if data is
not at a given level

Top Level
R Replica Catalog

(contains LFN -> site-RC
mappings for this VO)

a

4

> .
s redirects
and updates

redirects
and updates

Queries

Site 1
Replica Catalog

(contains LFN -> SE-RC
mappings for this site only)

Queries Grid Applications

\EmEraEmyy
"Nemmag,

redirects
and updates

Queries

Site 2, SE
Replica Catalog

Site 1, SE 1
Replica Catalog

(contains LFN -> PFN
mappings for this SE only)

Site1,SE 2
Replica Catalog

Figure 5.1: Digtributed Hierarchical ReplicaCatalog

When anew file is added to the RC, it is first added to the SE-RC. Thisway the loca catdog is dways
up-to-date. Periodically, say every few minutes, the SE-RC will send updates up the tree (i.e. to the
site RC, which in turn will periodically send updates to the top level RC).

When doing alookup of all PFNsfor agiven LFN, the Grid Scheduler (or possibly the user) can query
any RC (typically it would start with the top level RC for a given Virtual Organization). This RC will
automatically redirect the requests up and/or down the tree until it finds all possible PFNs. If the users
know that areplicais (or was) at a given site, they can go directly to the RC of that site or SE. If the
replica is no longer there, they will be redirected back up the tree. This way the load is spread over
more catalogs, relieving the top-level catalog of having to satisfy all requests.

This provides a great deal of fault tolerance. The site RC or the top level RC can be down or
unreachable without affecting local operations. It aso provides a high degree of scalability, as the load

|ST-2000-25182 PUBLIC 32/ 62



DATAMANAGEMENT (WP2)
ARCHITECTURE REPORT

Design, Requirements and Evaluation Criteria

Doc. Identifier:

DataGrid-02-D2.2-0103-1_2

Date 13/09/2001

is distributed over alarge number of RC's. The top level server should be replicated for increase fault
tolerance and scalability.

The RC API is described in Chapter 6. Note that the ReplicaCataog service is mainly used by the

ReplicaManager.

5.1.1.1. Replica Catalog Deployment Example

As a concrete example, consider one potentia structure for the CMS experiment (see Figure 5.2): on
each Storage Element a Storage Element-Replica Catalog is started up just for CMS. CMS aso
decides to configure an intermediate Replica Catalog at each Tier 1 site (INFN, RAL, etc). In addition,

there will be asingle, globa Root Replica Catalog at CERN.
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PostScript printer, but not to
other types of printers.

Figure 5.2: Outline of hierarchical, distributed replica catalog
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Figure 5.3: Interaction in hierarchical, distributed replica catalog

We assume that the protocol to talk to the Replica Catalog is HTTP. In the following example (see
Fig. 5.3) we describe some Replica Catalog lookup interactions using a redirection protocol based on
HTTP. In order to indicate a redirection step n the RC, the Replica Catalog returns rcr://hostname
where rcr stands for Replica Catalog Redirection and the hostname is the name of the host where the
redirected request should be sent. In our HTTP example, HTTP is used again to talk to the "next" host.

If the client wants to look up afile, it has three possibilities:

Connect to a Storage Element-Replica Catalog with an LFN directly. If the Storage
Element has a physical instance of thefile, its file handle is returned. If not, the lookup is not
successful.

In: http://SERC.cern.ch/getPhysi cal FileNames?L FN=cms.org/triggers/myfile.db

Out:  pfn://ftpOl.cern.ch/cms/triggers/myfile.db

Connect tothe Tier 1 Replica Catalog with the LFN. If it findsthe LFN, it will return with
aredirection request so that the client knows that it has to reconnect with the same query to a
given Storage Element-Replica Catalog or that it can choose from a list of Storage Element -
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Replica Catalogs. If Out: contains rcr://, then the client knows explicitly that redirection using
an additional lookup step is required. (We may want to discuss aternative redirection
mechanisms). If the LFN is not found, the lookup is not successful.
In: http://SiteRC.cern.ch/getPhysi cal FileNames?L FN=cms.org/triggersmyfile.db

Out:  rer://SERC.cern.ch

Connect to the CERN Root Replica Catalog. If the LFN isfound, we get back alist of Tier
1 Replica Catalog sites that do have the given file. They can be contacted with the same query
again to get a list of matching Storage Element - Replica Catalogs. Those then can be
contacted for a rea file handle. If the LFN is not found, it is not in the system.
In: http://RootRC.cern.ch/getPhysical FileNames?2L FN=cms.org/triggers/myfile.db

Out:  rer://SiteRC.cern.ch

An API cal like “getPhysicalFilenamesFollowingRedirection(Logica Filename)” (see Figure 5.3)
needs internal redirection steps if the lookup request is sent to a non-leaf Replica Catalog. If a request
is sent directly to the Storage Element-Replica Catalog, no additional 1ookup step is required and the
physica file location can be returned immediately. The redirection step is transparently taken at the
client side rather than at the server side since the server will be the bottleneck in the system.

Each replica catal og needs to store the URL s of its parent replica catalogs. This information is required
for loosely coupled batched update notification whenever entries are added/deleted to/from a leaf
replica catalog. Update notification propagates up the chain in the replica catalog hierarchy. The Grid
Service Index is used to maintain parent-child relationships among replica cata ogs.

The advantages of the hierarchica replica catalog approach can be summarized as follows:
Scalable to alarge number of sites and Storage Elements

Each site or Storage Element is autonomous and can manage files locally

5.1.1.2. Replica Catalog Sample Usage

A new replica entry is added directly to the leaf catalog (SE-RC), thus ensuring that the local catalog
is aways up-to-date. Periodically (e.g. every few minutes), the SE-RC propagates updates up the tree,
for example to the site RC, which in turn periodicaly propagates updates to the top level RC. When
doing a lookup of all PFNs for a given LFN, a Grid Scheduler (or a user application) can query any
RC. If desired, the replica catalog can automatically redirect requests up and/or down the tree until all
possible PFNs are found. If the user knows that areplicais (or was) at a given site, they can improve
performance by directly querying the RC of that Site or SE. If the replicais no longer there, the request
is redirected back up the tree. Thisway the load is spread over many catalogs, relieving the top-level
catalog of having to satisfy all requests. We assume that applications are mostly interested in

information on local files, so tree traversals are rare. A runaway query can be prevented by specifying
timeouts. In addition, a query can be scoped to only contact a given set of replica catalogs. This aso
provides fault tolerance. The site RC or the top-level RC can be down or unreachable without affecting
local operations. The top-level server, which contains an entry for each LFN in a given virtua

organization, should be replicated for increased fault tolerance and scalability.
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5.1.2. Replica Manager (Prototype: GDMP)

GDMP [R8,R11] originated as a pilot project to test data management issues on the Grid. Its purpose
was initialy to replicate Objectivity database files across Grid nodes. GDMP is already implemented
and works, unlike other services we plan to provide. The services that follow will benefit from the
experience of GDMP and will eventualy replace it. GDMP is one of the mgor components of the
Month 9 ddliverables of WP2. GDMP implements most services itself in some ways internally, which
we will extract and enhance into the 'real’ services. The next version of GDMP (i.e. after the Month 9
deliverable) will then be using those services as an application to achieve the same functionality and
more.

GDMP is afile replication software system initialy designed to replicate Objectivity database files
from one site (storage location) to one or more other remote sites. In the current version, arbitrary file
types (e.g. ROOT files, ZEBRA files, etc.) can be replicated from one site to another. GDMP works as
follows:

A site produces a set of files locally and another site wants to obtain replicas of these files. In the case
of Objectivity files, each site is running the Objectivity database management system locally, with its
own interna catalog of database files. However, the local Objectivity database management system
does not know about other sites and a replication mechanism is required that can notify other sites
about new files, efficiently transfer the files to the remote site, and integrate the filenames into the
Objectivity interna file catalog. An additional server needs to be available at each site to handle
replication requests and to trigger file transfers, notification messages, and updates of loca catalog
information. Simply put, this is done by a GDMP server running at each site where files are produced
and possibly replicated. In case of ROOT files (or any arbitrary file type), a local site catalog is
managed before files are replicated to other sites.

The GDMP replication process is based on the producer-consumer model: each data production site
publishes a set of newly created files to a set of one or more consumer sites, and GDMP ensures that
the necessary data transfer operations (including all the steps mentioned above) complete successfully.
These services are implemented by a set of interacting servers, one per site participating in the data
replication process. In summary, GDMP client command line tools provide four main services to the
end-user:

subscribing to aremote site for getting informed when new files are created and made public,
publishing new files and thus making them available and accessible to the Grid,
obtaining a remote site's file catalog for failure recovery, and

transferring files from a remote location to the loca site.

GDMP uses the Replica Catalog to for publishing replicainformation. For more details on GDMP and
the usage please refer to the GDMP User Guide [R10].

5.2. SQLDATABASESERVICE

The SQL DatabaseService alows convenient, scalable and efficient storage, retrieval and query of data
held in any type of local or remote RDBMS. It is expected that this service will be used for meta data.
The core functionality is SQL insert, ddete, update and query. The functionality can be invoked
from a command line tool, a Web browser, and a programming language API. A well defined
language, platform and RDBMS neutral network protocol between client and server is used. Thus, the
service can be seen as a unified Grid enabled front end to relational databases. It can, for example, be
used from C/C++, Java and Python to access data held in local or remote MySQL, Oracle, DB/2 or
Postgres databases, with clients using Linux or Windows and servers running Solaris. At the highest
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level no programming skill is required at all in order to talk to the service. At the lowest level, rich
customization and data transformation is programmeable.

The overall architecture of the SQL DatabaseService is a classic bosely coupled 3tier model on the
Web, as for example, exemplified by Google, amazon.com or the CERN Web phonebook: HTTP
clients ask server side Java applications to execute requests which are URL parameter encoded or
XML formatted. The server side application defines the logic of the request and converts it to SQL
(typicaly by subgtitution arguments in a template SQL query). It then dispatches the SQL query to a
SQL database backend tier for data storage and retrieval. Finally the server side logic trivially converts
the SQL result set to canonical XML and ships it back to the client application, which goes about
processing it in any desired way. If the client is a Web browser, then one additional XSLT pipeline
step on the server side transforms XML into HTML. Thisis avery popular architecture for problems
of this nature.

5.2.1. Component Design

The main component in the proposed design is a servlet that processes SQL queries and outputs the
result set as XML. Queries to retrieve, insert, or delete data are enbedded within XML templates
pages (XSQL files). These pages are accessed over HTTP. The user enters a URL through a browser
or programming API, which is interpreted and passed to the servlet through a Java Web server serviet
engine. The URL contains the name of the target XSQL file (.xsql) and, optionally, parameters such as
values and an XSL stylesheet name. After some processing, the servlet is able to retrieve the SQL
gueries from the page, connects and sends the queries to the underlying database which returns the
query results. Figure 5.4 depicts an interaction diagram of a complete request-response call chain
(where responses are implied by the usua convention).

Figure 5.4: Interactions of SQL DataBaseService
The service uses the following mechanism in each respective domain:

Network transport protocol for client server communication: HTTPS (i.e. http over
SSL/TLYS). Reason: A reliable request-response protocol is sufficient. https allows to leverage
the massive existing infrastructure of flexible, robust and scalable, easy to use http based tools.
Vendor and programming language restrictions are avoided. Buggy, sow, hard-to-deploy or
otherwise inappropriate components can easily be exchanged with aternatives without effect
on compatibility and interoperability.

Data exchange format between loosely coupled components: XML. Reason: XML is very
flexible, easy to use, standardized, language and platform independent, and widely supported.
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Naming: URL + tablename. A SQL table is globaly unique idertified by the database
instance URL followed by the name of the table.

Query language: SQL. Reason: SQL is standardized, powerful, highly efficient. It only
exposes high level conceptual model and hides physica model so that physica modd can be
evolved and optimised without breaking any client code

Database: any RDBMS Reason: Relationd DBs are low risk solutions which are well
understood, standardized, highly efficient, robust, scaable. A large range of open source and
commercial implementations are available.

Security: HTTPS, X.509 Certificates (GSI compatible). Reason: Simply the only viable
options.

5.2.2. Examples of Use

We now demonstrate sample usage of the service through two example use cases. The first use case
describes how to retrieve metadata about logical file names from a replica catalog. The second use
case shows how to insert logical file names and associated meta data into a replica catalog. Let us
assume we have arelational table “Rccatalog” with LogicalFileName and filesize columns:

Tabl e RCcat al og
LFN | Size

host 1. cern. ch/sonepath/filel | 10000000
host 2. cern. ch/ sonmepath/file2 | 50000000

The SQLDBservice supports any number of user defined queries. A query is defined via a template

file. The template file for a"getLogicalFileMetaData' query containsasel ect * from t abl e”
SQL retrieval statement. More precisdly, it reads as follows:

<xsql : query xm ns: xsql ="urn: oracl e-xsql" connection = "nyconnecti on"
select * from*{@atal og}’
</ xsql : query>

For our discussion, the first and last line contain syntactic sugar and can safely be ignored. As can be
seen the query contains a variable " @catalog”. Variables are later substituted with actual values upon
guery invocation. In order to retrieve the metadata associated with all known logica file names, a
client invokes the query by sending query template name, variable names and variable values to the
server. Thisis done by issuing aHTTP GET request, either from a Web browser or client API, to the
following URL:

http://sql.cern.ch/getlLogical Fi | eMet aDat a?cat al og=' RCcat al og'

Upon invocation, the query variable "@catalog” is substituted with its actual value "Rccatalog”. Next,

the resultant query "sel ect * from RCcat al 0g" isexecuted against the database and the result
set returned to the client as canonical XML:

<ROWBET>
<ROW
<| fn> host 1. cern.ch/sonepath/filel </|fn>
<si ze> 10000000 </size>
</ ROW
<ROW
<l fn> host 2. cern.ch/sonepath/file2 </1fn>
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<si ze> 50000000 </size>
</ RO\
</ ROABET>

Canonical XML defines a direct mapping from SQL to XML and vice versac A SQL table corresponds
to a ROWSET element, a SQL row corresponds to a nested ROW eement, and a SQL column is
mapped to a nested tag with the same name, filled with the value of the column. For further details
consult [R16].

As a second example, let us assume a client wants to insert logical file name data into a SQL table.
The client issuesaHTTP POST request to the following URL :

http://sql.cern.ch/nyinsert
with the body of the message holding the data to be inserted:

<ROWBET>
<ROWN
<l fn> host1l.cern.ch/sonepath/filel </Ifn>
<si ze> 10000000 </size>
</ ROW
<ROW
<| fn> host 2. cern.ch/sonepath/file2 </|fn>
<si ze> 50000000 </size>
</ ROW
</ ROABET>

The "myinsert" query template file is defined with the appropriate insert command:

<xsql :insert-request xm ns:xsqgl ="urn:oracl e-xsql"
connection = "denp"
tabl e = "RCcat al og"
transforne"trans. xsl "

</ xsql :insert-request>

5.2.3. Deployment

Due to its flexible nature, the SQL DatabaseService can be customised heavily without a need to
compile or write any code. The service establishes persistent connections to backend RDBM Ss based
on a configuration file containing information such as JDBC database driver names to be used,
database hostnames and ports, database users, passwords, etc. Query template files are not hardcoded
into the server. Instead, they are dynamically picked up from the file system (just like HTML pagesin
normal Webservers). Thus one can easily add, remove or modify queries viaintuitive file operations.

The service can be run in a smal environment with moderate performance and availability
requirements. It can, lowever, aso be deployed to transparently and reliably handle hundreds to
thousands of concurrent requests per second. A scalable high availability deployment scenario of a
single SQL DatabaseService is shown in Figure 5.5 The setup has N concurrent clients, M http servers
(e.g. Apache), O servlet engines (e.g. Tomcat), and P RDBMS instances (e.g. Oracle Parallel Server).
Each of these can (but need not) run on a different box. Improved performance is achieved by
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transparent load balancing over all these levels, as well as thread, connection and transaction pooling.
Transparent failover is implemented via IP redirection. Note that this setup requires no complex
request routing on the client side, because it smply appears as a single large service to clients. Also

note that for simplicity and performance reasons, al constituents of the service should reside on a low
latency high bandwidth LAN.

Title:
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Figure5.5: Scalable high availability deployment of SQL DatabaseService

5.3. SERVICEINDEX

Service indexes provide the glue that ties together alarge number of decentralized Grid components to
support collaborative work within virtual organisations. For example, Grid services are utilized for
service discovery, job submission, network, systems and application monitoring as well as software
and system configuration management. At the core, Service Indexes connect loosely coupled
information providers and consumers and enable desired communication flows in a secure, efficient
and flexible manner.

A Grid consists of one or more information spaces. An information space is an abstract metaphor and
contains the structured or semi-structured meta data needed to carry out a given application use case.
For example, job submission requires information about the program being submitted (e.g. estimated
CPU/IO ratio, number of threads and processes, interactive or batch) and the resources necessary to
execute the job (e.g. architecture, memory, disk and tape storage, dependencies on shared libraries and
versions, availability and connectivity to local and remote third party services like database engines,
ftp, hitp, tape stagers, AFS/NFS). An information space is constructed from a number of information
sources (service providers, henceforth called services) which are network connected with information
sinks (consumers, henceforth called clients). More precisely, a service is a continually running
network attached program waiting to serve client requests (daemon). Clients and services are
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communication end points (peers) and speak platform and language neutral network protocols, hence
can reach across architectures and organisational boundaries (subject to local security policy). Clients
may themselves be services, in which case they play the role of proxies or mediators, making available
a custom tailored structured view of the underlying information space. For example, search engines
and service brokers delegate requests to one or more other services and integrate their results. Proxies
can be stateless or maintain memory or disk resident soft state (caches). Note that there neither existsa
single grand monoalithic database containing an information space nor a single owner thereof.

This model is similar to a network of http servers serving static or dynamic HTML pages linked by
URLsand being consumed by human clients. The Web model is a powerful basis to leverage from.

5.3.1. Scalability Requirements

Grid projects are often undertaken as collaborations of multiple large and small organisations, and
typically based on distributed n-tier models. Such systems cannot be managed centrally. For example,
database catalog services, replica management services, file transfer services, software and system
configuration management services, as well as monitoring services may run independently on N>10
sites and M>10000 nodes. Consequently, many services are partitioned and/or cloned, both among
institutions and within a site, which in turn exposes many different kinds of scalability limits, and can
lead to communication boot-strapping and systems management problems. We are not concerned with
small scale ad-hoc solutions that work fine on the department level but break down on the global scale,
for reasons including inflexibility, implicit knowledge, efficiency, reliability and manageability.
Instead we attempt to tackle the fundamental mechanisms that turn ad-hoc information services into
Grid Information Services.

Before a client can ask a service to execute a request on its behalf, it needs to get a "handle" to the
service in the first place. More generally the following basic questions arise:

How do | find a service to which | can ask the questions below? This is termed the service
boot-strapping problem

Which services are available a any given moment in time within a virtual organisation or a
subgroup thereof ?

On which hosts and ports do these services live, what protocols do they speak and what kind
of information do they offer to whom?

In a smal, centralized environment such questions can easily be answered. Implicit knowledge
("everybody knows that af s43. cern.ch is a semi-public Sun450 fileserver with 0.5 TB hot-
swapable SCS| raid disk™), or a phone call, or consultation of a centrally managed configuration file
yields answers. Decentralized Grid environments call for more scalable solutions.

5.3.2. Design Principles

A service index service (SIS) infrastructure is purely concerned with enabling (rather than replacing)
communication between peers. It assists a client in finding a service matching its needs. The client can
subsequently direct more elaborate and specific questions to the matching service. At the core, a
distributed SIS infrastructure keeps track of a graph of services and associated descriptions, which can
be traversed, i.e. searched. Figure 5.6 depicts a graph of services.
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Figure 5.6. Globa Graph of Services

A graph is favoured over a rigid hierarchical structure, because a single hierarchy cannot reflect
equaly valid decompositions such as by network topology, ownership, or functionality. This is
somewhat similar to a Web infrastructure maintaining a graph of hyperlinked HTML pages, which can
be navigated. The SIS keeps track of changes over time, as services crash, are added, reconfigured, or
phased out. Note that in the core SIS model (phase 1), there exists no "intelligent” search engine and
query language. The only means to discover matching services is by traversing (crawling) the graph.
The core mode is limited in usability with respect to the true desires of clients, yet provides the
foundation on top of which more advanced search engines or custom tailored matchmaking brokers
can be built (phase 2). Note that undertaking phase 2 before or without phase 1 means constructing
small centralised information idands with little chance for integration into a "Grid".

The graph ensures that for each client end point there exists at least one path to reach every service
description, possibly via several hops. Assuming the graph is in place, then a client is confronted with
the problem of finding the appropriate entry point into it. An organisation may for example choose to
provide its clients atop level entry point into the globa service description graph. Thistop level entry
point (Root SIS, or smply RSIS) can either be a well known host through conventions (e.g.
rsis. | ocal domai n: 55555) or dynamically discoverable through DNS SRV records. In the latter
case, aquery to the loca domain's DNS server will return the address of the RSIS (thisis the way the
Internet email infrastructure scales and works). Let us now examine in more detail the properties of
services, descriptions and SIS's.

Service. To alow construction of graphs, a service keeps a list of parent S Ss to which it periodically
(re)announces its description in order to provide for smple and fail-safe change propagation. A service
supports a protocol that returns its service description as well as its parent service descriptions upon
request (subject to security policy).
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Service Description. With each service a "Service Description” is associated, containing the
information a client needs in order to be able to effectively communicate with the service. The
description contains mandatory and optional items. Mandatory items require collaboration-wide
standardisation to achieve interoperability. Descriptions are defined in XML. All descriptions inherit
from a standardized base XML schema, possibly using the Web Service Description Language
(WSDL). Therefore, the base schema can be extended in a type-safe manner.

The following example illustrates a sample service description of a replica manager. It defines the
mandatory information such as the URL and type of service, the Virtual Organization it belongs to, as
well as details about the protocol it speaks. In addition optiona high level information about replica
catalog contents is given so that clients can filter and exclude services not of interest. Note that the
example does not claim to well specify the layout which will finally be adopted for replica managers.
The find layout is likely to look different in significant ways.

<service>
<mandat ory>
<URL>x-Gri drep://eff555. cern. ch: 55555</ URL>
<type> replica-nmanager </type>
<owner > atl as </ owner>
<emmi | > atl assupport @ern.ch </enunil >
<protocol version = "1.2"

<aut henti cation nmechanism= "GSI"/>
<aut henti cati on nmechani sm = " CRAM MD5"/ >
<aut henti cati on mechani sm = "OIrpP"/ >
</ prot ocol >
</ mandat or y>
<optional >
<cat al og>
<type> atlas-trigger-studies </type>
<runs>
id-from = "10000"
id-to = "20000"
date-from = "2000-12-08"
date-to = "2001-02- 20"
st at us = "di sk resident"
si ze = "2 TB"
</ runs>

</ cat al og>
</ opti onal >
</service>

In order to avoid overloading the service index infrastructure, i.e. to keep it efficient, reliable and
operational, it is highly recommended to include optional information only if it is both light-weight
and necessary for fast filtering in high level searches. More detailed information would better be
obtained by querying the replica service through its private "replicamanager” protocol or through
custom tailored search engines, both integrating service descriptions and results of queries to the
replica managers itself.

Service Index Service. An SIS is a service, and as such inherits all characteristics of a service,
including the fact that it can have parents and periodically (re)announces its description to them. To
alow construction of graphs, it additionally keeps a list of children services (or more precisdly, their
service descriptions). An SIS supports a protocol that returns its children's service description upon
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request (subject to security policy). Children can register themselves through an announce-listen
protocol (subject to security policy). In order to allow for fail-safe, smple and automated distributed
garbage collection, service descriptions of children are kept as soft state, that is, they are cached for a
limited amount of time. In other words, service descriptions are tagged with time-to-live tokens
(TTLs), hence expire and get dropped unless renewed via (re)announcement. Consequently, services
can crash, stop, be added or changed without leaving stale state behind indefinitely. Soft dtate is
desirable, because it elegantly avoids the countless complexities more elaborate designs face in
attempting to determine when and why to remove stale data without compromising consistency and
offending information producers. Hard state based distributed information systems populated from
many independent sources quickly evolve into garbage dumps where valid information is hard to
digtinguish from trash, decreasing overal utility dramatically. If scalability and bandwidth are of
concern, messaging protocols throttling announcement frequency can be used. Spammers ignoring
throttling messages can be dropped without further notice.

5.4. SECURITY SOLUTIONS

5.4.1. A Security Model for the SQLDatabase Service

In our approach of providing secure access to services defined within our work package we will
discuss now how this can be achieved for one of our key components, the SQL Database Service. This
service has aready been described but only a minimal part of its security requirements have been
outlined. The proposed architecture for this service aready copes with some basic security
requirements but we will demonstrate that for a production level service, involving a large number of
different Grid users, some additional requirements need to be supported. To understand what
fundamental security requirements are aready provided with the proposed design, we have to recall
what are the main components and functionality provided by this service. Here we will just pay
attention to those issues that are relevant for our discussion about security (a more detailed description
of this service is given in a previous section in this document).

One could summarize the whole process by saying that the main component in the proposed
architecture is a servlet that processes SQL queries and outputs the result set as XML. Queries to
retrieve, insert, or delete data are embedded within XML datapages (XSQL files). These pages are
accessed over HTTP. The user enters a URL through a browser, which isinterpreted and passed to the
servlet through a Java Web server. The URL contains the name of the target XSQL file (.xsgl) and,
optionally, parameters such as values and an XSL stylesheet name. After some processing, the serviet
is able to retrieve the SQL queries from the page, connects and sends the queries to the underlying
database which returns the query results. In order to achieve this, the XSQL Serviet uses a
configuration file to access and authenticate the database connection.

A sample configuration file looks as follows:

<?xm version="1.0" ?>
<XSQ.Confi g>
<connecti ondefs dunpal | owed="no">
<connecti on name="deno">
<user nane>scot t </ user nane>
<passwor d>t i ger </ passwor d>
<dbur| >j dbc: oracl e: t hi n: @ ocal host: 1521: ORCL</ dbur | >
<driver>oracle.jdbc.driver.OracleDriver </driver>
</ connecti on>
</ connecti ondef s>
</ XSQL.Confi g>
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The XSQL Servlet finaly expects to find an attribute named "connection" on the XML document's
root element whose value must match the name of a connection defined in the configuration file.

5.41.1. HTTP over SSL

Since HTTP is the protocol used in our design to reach XSQL pages using standard URLS, it is easy to
see that a straightforward access control mechanism can be implemented. One could use a secure
extension of HTTP to restrict access to XSQL pages to authorized users only. Such a secure extension
is dready available and is widely known as HTTP over Secure Sockets Layer (SSL). The Secure
Sockets Layer protocol is a protocol layer which may be placed between a reliable connection-oriented
network layer protocol (e.g. TCP/IP) and the application protocol layer (in our case HTTP). SSL
provides for secure communication between client and server by alowing mutual authentication, the
use of digital signatures for integrity, and encryption for privacy (see [R20] for a detailed description).
The protocol is designed to support a range of choices for specific algorithms used for cryptography,
digests, and signatures. Choices are negotiated between client and server at the start of establishing a
protocol session. This session is established by following a handshake sequence between client and
server which may vary, depending on whether the server is configured to provide a server certificate or
request a client certificate. HTTPS can be used in our service to authenticate clients (with X509
certificates) and deny access to those who are unable to present valid certificates.

5.4.1.2. Security Realms

Using HTTPS forces WEB servers to be modified to include SSL functionality and certificate
management infrastructure in place to issue valid certificates to potentia clients. Besides, it uses the
URL scheme https rather than http and a different server port (by default 443). In those cases where
such modifications are not possible, the use of security realms can be an alternative. A security realm
is a mechanism used for protecting Web application resources. It gives the ability to protect a resource
with a defined security constraint and then define the user roles that can access the protected resource.
An example of a WEB server that has this type of realm functiondity built in is Tomcat [R21]. It
provides a mechanism by which a collection of usernames, passwords, and their associated roles can
be integrated and used for access control. Tomcat provides two ream implementations called
respectively memory and JDBC realms. Tomcat's MemoryRealm class uses an XML file as a
repository for roles and user definitions. A sample memory realm XML file could be:

<t ontat - user s>
<user name="tonctat" password="tonctat" rol es="tontat" />
<user name="rol el" password="tonctat" rol es="rolel" />
<user name="both" password="tonctat" rol es="toncat,rolel" />
</tontat -users>

Additionally, for every protected WEB resource, a collection of access constraints needs to be defined.
This is achieved in Tomcat by adding security constraints (expressed in XML) to the Web.xml file
associated to the resource. For instance:

<security-constraint>

<Web-resource-col | ecti on>
<Web-r esour ce- nane>OnJava Appli cati on</ Wb-resource- nane>
<url-pattern>/*</url-pattern>

</ Web-resource-col | ecti on>

<aut h-constrai nt >
<r ol e- name>onj avauser </ rol e- nane>

</ aut h-constrai nt >
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<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- net hod>
<real m nane>OnJava Appli cation</real m nane>
</ 1 ogi n-confi g>
</security-constraint>
This constraint specifies that everything under resource "Onjava Application” is only accessible by
users playing the role "onjavauser”.

JDBC reams on the contrary do not use an XML file to store user and roles definitions but rather a
relational model stored in a relationa database accessed with JDBC. This has the advantage that
several servers can access a shared user-role database and modifications to this database are
immediately visible by al the stakeholders. The only remaining issue to deal with isto tell Tomcat
how to reach the user-role JDBC-enabled repository. This is done in a ssimple way by adding some
configuration information. See an example below that uses MySQL as the underlying repository:

<real m

cl assnanme="or g. apache. cat al i na. real m JDBCReal ni

debug="99"

drivernane="org.gjt.nm nysql.Driver"

connectionurl ="jdbc: nysql://I ocal host/tontat users?user =t est; password=test"

usertabl e="users"

user nanmecol ="user _nane"
user cr edcol ="user _pass"”
userrol et abl e="user _rol es”
rol enanecol ="rol e_nane"/ >

5.4.1.3. XSQL Basic Access Control

No matter whether HTTPS or security realms are used to restrict access to Web resources (in our case
XSQL pages) it still remains to know what restrictions need to be enforced when accessing the
underlying database system where SQL queries have to be executed. XSQL specification knows about
what connections have to be established by binding a given XSQL page definition to a given database
connection. This means that once a client has been granted access to an XSQL page she would be able
to execute the SQL queries contained in the page playing the role of the user specified in the
connection attribute of the root element in the page.

5.4.1.4. An Advanced XSQL Access Control Mechanism

The access control mechanisms described above are definitely vaid for implementing tasic level
security, however there are some unresolved issues.

First, when using SSL, access control is enforced by inspecting the certificate that the client side
presents during the handshake process. In this case access control policies are defined in terms of
existing fields in the certificate (the validity period, the signing certificate authority, the distinguished
name, etc). These fields can be even extended with X509 v3 extensions and most implementations of
SSL provide mechanisms to access such extensions and implement complex policies. Though this is
feasible, this access control mechanism is not bound to XSQL. This means that complex policies
defined a the X509 certificate level cannot be propagated into database connections that are
dependent on such policies. This also appliesif security realms are used since information about roles
and users defined in a JDBC realm is also not propagated.

Second, XSQL has an important restriction because each page is statically bound to a given
connection type. Thus, if different clients would need to execute the same type of queries on different
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databases we would need to replicate the required XSQL pages as many times as different types of
connections would need to be supported (and this does not scale in a Grid environment).

To overcome these disadvantages we need a mechanism that, first, can generate dynamically (not
statically bound to XSQL pages) different types of database connections, second that complex policies
can be defined and third that we can leverage on existing technologies like X509 certificates. The

work to be done to obtain an advanced X SQL access control mechanism will investigate the following
components:

A repository for X509 certificates with extensions that contains not only user information but
also role and group relationships. X509 certificates are specialy interesting for us as opposed
to JDBC realms because the existing Grid middleware like GSI [R26] aready makes use of
this mechanism for security enforcement.

An extension to the current XSQL tag-language to incorporate authorization information that
can be dynamically trandated into connection attributes within an XSQL page. This language
extension should also leave the door open to mechanisms not based on X509 certificates such
as Tomcat Realms.

An extension to the XSQL servlet to process the language extensions defined above.

In genera terms, and assuming X509 certificates as the mechanism to identify clients, the advanced
XSQL access control mechanism would work as follows:

The user enters a URL through a browser, which is interpreted and passed to the XSQL
Servlet through a Java Web server. Thisis based on HTTPS and a client X509 certificate is
requested (as part of the standard SSL handshake process)

The XSQL page processor processes the requested XSQL page by looking for "Action
Elements’ from the XSQL namespace. The first action element to be processed being an
authorization action element.

The page processor invokes the authorization action element handler class b process the
element.

The handler obtains al the client information from the SSL layer and uses this information to
obtain group and role based information from the authorization repository.

The handler also obtains information about security constraints (allowed database connection
types) for the accessed XSQL page based on the group, role, and user information previously
obtained.

The handler decides whether SQL query execution is allowed or denied for the accessed
XSQL page and dynamicaly embeds within the XSQL page the appropriate database
connection information.

The XSQL page processor continues the parsing of the remaining XSQL tags and the embedded SQL
statements are executed with the database connection obtained from the previous steps.
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5.4.2. A Security Model for CASTOR

5.4.2.1. Introduction

CASTOR [R4], the “CERN Advanced STORage manager”, is a tape storage system developed at
CERN. Its god is to manage part of the huge amounts of information generated by the Large Hadron
Collider (LHC) experiments starting in 2005. The aim is to manage this data in a fully distributed
environment.

Today CASTOR is dready in use at CERN for managing the information generated in some of
CERN's current experiments e.g. ALICE, ATLAS, and COMPASS.

TM3E

W DOL

server

RTCOPY | poIRELELE .
YOLUME GTER /
manager

RFIOD L J

DISK FOOL

Figure5.7: The CASTOR client server architecture

Today's version of CASTOR makes use of the host operating system’s own security mechanisms for
user authentication and authorisation. When an end user client program contacts CASTOR, the client
program checks the end user's identifier and group identifier from the host it is running on. Next, it
sends them as clear text to the CASTOR servers receiving the request. The CASTOR servers make
authentication and authorisation decisions based on these two identifiers and then processes the
request. See Figure 5.7 for details.

CASTOR does not support traffic encryption so al communications between the client programs and
the server programsisin clear text.

There are severa problems in the security model presented above. For example, an administrator of a
host can impersonate an ordinary user and make the client program authenticate itself to CASTOR as
if she were the ordinary user. In this way, an administrator may get unauthorised access to an end
user'sfiles stored in CASTOR.
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The other problem is CASTOR's clear text protocols. An eavesdropper can find out what valid user
identifiers and group identifiers exist by listening to the network communications. After intercepting
an intereting pair, the eavesdropper can then construct the protocol elements that are needed e.g. to
get a copy of a user's file stored in CASTOR, delete or modify one, etc. Manrin-the-middle attacks
(where the attacker intercepts and possibly modifies information between two communicating peers)
are also possible, resulting in the same kind of problems.

5.4.2.2. GSl and CASTOR

Due to the smplicity of exploiting the authentication and authorisation mechanisms of CASTOR, it
was decided that the impersonation problem and man-in-the-middle attacks described earlier needed to
be fixed.

Several options were studied. The first was Kerberos, which offers strong cryptographic services but
suffers from a scalability problem effectively limiting its use to smaller organisations. In the case of
CASTOR and CERN this is not feasble since scientific efforts a8 CERN usualy involve severd
collaborating organisations and, in many cases, thousands of collaborators.

Severa Grid middleware solutions were studied. It seemed that the Globus toolkit is emerging as the
de facto middleware of dice for CERN. Among its components we find the Globus Security
Infrastructure (GSI) module. This module, implementing the Generic Security Services Application
Programming Interface (GSSAPI) standard, was found to have severa interesting properties such as
dynamic security algorithm negotiation, mutual authentication using X.509 certificates, support for
severa operating systems, etc. These characteristics fit in very well with the heterogeneous operating
environment of the Grid and therefore that of CASTOR. Using X.509 certificates for mutual
authentication will also prevent mantin-the-middle attacks.

After choosing GSI for enhancing the security of CASTOR, it was decided to split the work into two
phases. The first phase involves using GSI to mutualy authenticate end usersto CASTOR’ s front end
servers. The second phase aims to improve the security of CASTOR’s internal servers by adding GS
mutual authentication between its front end servers and back end servers.
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5.5. GRID QUERY OPTIMISATION

In this section we base our discussion on a Grid Architecture diagram (Figure 5.8) specialized to the
"Grid Query Optimisation” (GQO) task. This is an extension to the description of the architecture in
Chapter 3, i.e. Figure 5.8 is a specidization of Figure 3.1.

L ocal Application L ocal Database

Local Computing

Grid Grid Application Layer Job Management

[ Job Decomposition ] [ Job Prediction ]

Collective Services

Information & Grid Scheduler
Monitoring
[ Network Monitoring ] Replica Catalog Interface [ Time Estimation ]
[ Grid Information ] Replica Optimization Load Balancing

Underlying Grid Services
Computing Storage Authorisation,
Element Element Authentication
Services Services and Accounting

Figure 5.8: Grid Architecture from the point of view of “Grid Query Optimisation”

In this section our aim is not to define an explicit "Grid Query Optimisation Service" per se, but rather
to discover which services will be required in order to optimise data access in a Grid environment. Our
focusis on the use case of High Energy Physics Analysis as described in Chapter 2.

Please be aware that this section is the most speculative and most visionary of our design sections. We
feel that it is essential to keep these considerations as an active part of our design to gain insights into
what future Grid infrastructures might be able to provide. Obvioudy these are dl long-term
considerations which need the active collaboration of all other DataGrid work packages.

5.5.1. The Local Application Layer

The top layer of the architecture, the "Local Application Layer”, exists outsde of the Grid
infrastructure. It isin this layer that TAG data analysis will most likely be performed. TAG data will
be stored on localy owned storage devices, using a localy managed database system. The
optimisation of TAG data anaysis is aso part of the task "Grid Query Optimisation”, and will be
achieved through the Bitmap Indexing of TAG data values [R12, R14]. Once the physicist has
exhausted the local supply of information, he begins to analyse on lower level Grid managed data, by
submitting ajob to the Grid viathe local Grid Client.
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5.5.2. The Grid Application Layer

5.5.2.1. Job Management

This application level Job Manager will submit each job to the Grid Scheduler in the form of a well
defined "Job Description Language” (JDL, see [R15]). There is need, therefore, for Job Decomposition
functiondity within the Job Management system, so as to reformulate jobs into (graphs of) atomic
computation steps ready for submission to the Grid. Only the applications themselves can provide
enough information to fulfill such a decomposition task. One architecture (not necessarily advocated
here) would be to define a standard interface to a Job Decomposition service, which some/al Grid
applications could implement, such that the Grid Scheduler could access decomposition services at
execution time. Another approach would be to decompose al jobs completely before passing them in
JDL form to the Scheduler. The main output of the Job Management would thus be a logicaly
decomposed job which could then be further "optimised" by the Scheduler together with the Replica
Manager/Optimiser. It is important to note at this point that a close collaboration d WP1, WP2 and
WHP8 is required for addressing this topic efficiently.

We aso propose the need for a Job Prediction component within each Grid application. Such a
component would be responsible for collecting statistics on the execution of Grid jobs, and for making
predictions based on those statistics in terms of:

Which logicd files/ data collections a (analysis) job islikely to require.
How long ajob is likely to run for.

The collection of statistics for the first prediction would require that database access to files/data
collections is logged in some way, and that the log information is made available to the Job Prediction
component. (This may be done either by the Grid intercepting calls to the database, or by the database
itself logging its own activities.) Assuming the gathering of statistics is possible, why would such
predictions be important, and why would the information not be known already? In fact, in many
analysis type jobs, it is impossible to know a priori what data the job will access, or how long it is
likely to run for, due to the so-called “navigationa problem”. Estimations made by the Job Prediction
unit would then be used by the Scheduler to optimise the execution of the job. Since the similarity
between different jobs can only be assessed on a semantic level (i.e. by the application submitting the
job), the Job Prediction unit needs to be co-located with the Grid application. The unit may aso use
other information, such as the physicist's user profile, or processing hints the physicists have given, to
make predictions for job execution. As was the case for the Job Decomposition system, there are two
mechanisms by which the prediction information can be passed from the Grid application to the
Scheduler. The first option is to include such information as hints in the JDL (i.e. to generate all the
prediction information a priori). The second option is to define an interface for the Job Prediction unit
which would be used by the Scheduler to make predictions if and when required.

5.5.2.2. Data Management

In the current context of optimisation we propose to extend the Data Management module of the
application layer described in Chapter 3 with a Data Registry. It is an interface in the application layer
to the Replica Manager of the Collective Services layer.

5.5.3. The Collective Services Layer
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We define a few submodules as part of our discussion of optimisation. See the differences between
Figures 5.8 and 3.1 in the Collective Services layer. In the sections below the functionalities of these
modules with respect to optimisation are discussed.

5.5.3.1. The Information and Monitoring Service

The Information and Monitoring Service will aggregate information provided by monitoring services
such as the Network Monitoring Service (monitoring traffic on Virtual Private Network links between
sites) and the Fabric Monitoring Service (monitoring the load on computational resources at the
different sites).

5.5.3.2. The Replica Manager

The aim of the Replica Optimisation module is to automatically replicate data throughout the Grid in
such away as to minimise the total cost of data access for al the jobs executing on the Grid. Thisis
part of what we called “long term optimisation”. Within a site the module might control which files
remain staged on disk and which ones are relegated to tape storage. Between sites the module would
control which files are replicated and which ones are not. The question then becomes, how does the
Replica Optimiser decide which files to replicate and which ones not to? i.e. how does the Replica
Optimiser know which files will be in demand on the Grid and which ones will not? It could do this

by:

collecting its own statistics; (It would be too late to collect information at this point, if the
mapping between data collections and files is not constant across the Grid, i.e. if internal data
reclustering at each site causes data to be stored differently at each site))

asking the Grid Scheduler
accessing standard services of the application layer Job Prediction module or by

receiving hints directly from the application. (The application level Job Prediction unit could
assign importance levels to different logica files / data collections, which the Replica
Optimiser would then to decide where and how many replicas to create.)

A second function of the Replica Optimiser (a kind of short term optimisation) is to find the "best"
replica of a file when the file is demanded by the Scheduler. In this case the Replica Optimiser can
decide whether it should create a new replica of the file locally, create atemporary copy of the file
locally, or (possibly) open the file on the remote location for remote access. In the case where it
decides to create a loca replica or copy of the file, the Replica Optimiser must use an interface
provided by the Data Registry module of the application level Data Management system to import the
new replicalcopy into the local database implementation.

5.5.3.3. The Grid Scheduler

Other important functions of the Replica Optimiser are to supply the Time Estimator module of the
Scheduler with time estimates for the retrieval of files, and to negotiate with the Load Balancer to
determine the best location for executing a given job, based on both the data and computational

requirements of the job. The negotiation with the Load Balancer may require close coupling between
the two components (as shown in Figure 5.8). We want to stress again at this point the importance of a
close collaboration between WP1 and WP2 on this task.

The Scheduler provides high level scheduling services to Grid applications such that applications need
not know where and how to schedule their work on the Grid, but can simply define the constraints for
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running a job (such as the amount of memory it requires, the input data collection it needs, etc.) and
alow the Grid to schedule it for them. The applications can then view the Grid as a single enormous
computation and storage resource. One of the functionalities that needs to be provided by the
Scheduler is that of Time Estimation for the execution of a Grid job. A time estimate is used by the
Grid application or the physicist to decide whether or not to run a job. The Time Estimator uses
information from the Job Prediction module, the Information and Monitoring services, and the
Replica Optimiser to caculate an approximate time for job execution.

The Load Balancing unit is responsible for the actual scheduling of jobs to different sites on the Grid.
It takes as input a decomposed job from the Grid application, and negotiates with the Replica
Optimiser to discover the best location for job execution, based on the availability of both data and
computational resources. (The Replica Optimiser uses information from the monitoring services to
compare the costs for replicating data to different sites.)

5.5.4. Grid Query Optimisation (GQO) Task Specification

The GQO Task is foreseen to form a major part of the Replica Optimiser module of the Replica
Manager. In this section we look more closely at the required functionality of such a module. The
functionality can be viewed in terms of the five “services’ it offers:

Data Access Time Estimation. Aid the Time Estimation unit of the Scheduler to calculate
approximate data access times for jobs that might be submitted to the Grid. The Replica
Optimiser accesses the Network Monitoring Service (to discover the current network
bandwidth situation), a Storage Device Monitoring Service (to discover the current load on the
devices), and the Replica Catalog (to discover the amount of replication of the required files),
so that an estimate of the cost of data movement can be returned to the Scheduler.

Pre-Execution Optimisation. Aid the Load Baancing unit of the scheduler to make
scheduling decisions, (i.e. help the Load Balancer decide on which site to run a job). An
optimised scheduling decision should take into account both the cost of data movement
between sites and the computational load on sites. A trade-off between data optimisation and
computation optimisation will be achieved through the use of a negotiation protocol between
the Replica Optimiser and the Load Balancer. (This negotiation/interaction protocol is still to
be defined.)

During Execution Optimisation. If ajob requests a set of data at a particular site, and the
datais unavailable at that site (e.g the database method returns an exception, and the exception
is caught by the Replica Optimiser), then the Replica Optimiser needs to make a decision on
how to optimally access the missing data. The Optimiser can then choose between possibly
five options:

o Open datafor remote read on asite with afast network connection.
o Copy the datalocdly, register and create areplica of the data.
o Copy the datalocaly, register atemporary replica and de-register it subsequently.

o Ask the Scheduler to reschedule and restart the job on another Ste (e.g. aTier 1 or 0
site).

Post-Execution Optimisation. The am of this optimisation is to automatically distribute
(create replicas of) the Grid managed output files created by jobs running on the Grid. (Such
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output files are primarily only created by production type jobs, which are not the main focus
of our work). In making decisions on to what extent to replicate the output files, the Optimiser
relies on hints from the user submitting the job, as well as heuristics information on the use of
similar sets of data.

Offline Optimisation. The aim here is to monitor the usage of logica files / data collections
on the Grid as awhole and try to match the supply of replicas to the demand for them.

As well as creating the mgjor part of the Replica Optimiser, the GQO task involves helping the
applications groups (Work Packages 8 to 10) to create the Grid Application Layer services they
require in order to make optimal use of the Grid. The services of interest include the Job
Decomposition, Job Prediction, and Data Registering service. The assistance would be in terms of
defining standard interfaces to these components and possibly helping to create generic code for use in
each application's implementation of the components.

5.5.5. Interaction of Services for the HEP Use Case

We now return to the particular HEP use case described previously in Chapter 2.

At the start of the use case, the physicist performs "cuts' on the entire data set, by specifying that she
isonly interested in those events for which certain conditions on TAG attribute values hold. The local
application sends these "cut predicates’ to a local (bitmap) indexing system, which returns a list of
events adhering to the selection. The physicist then performs some sort of statistical analysis on the
events returned by the indexing system, studies the results and repeats the process. Since TAG datais
mostly stored localy, the Grid is probably unaware of the analysis being performed by the physicist.
After exhausting the information available in the TAG deta, the user writes analysis code and submits
it asajob to the Grid. The local application sends this code, along with the names of the AOD objects
of interest and an output location for the results of the computation, to a Grid Application Layer "HEP
Application".

The Grid level application reformulates the request into a job capable of execution on the Grid. It does
this by mapping al of the requested AOD objects to a set of logica files or to a data collection
description. It may also decompose the job into smaller subjobs via the Job Decomposition service.
Having reformulated the request, the application then submits it to the Grid for an estimation of
execution time and cost, by sending a request to the "Scheduler" which provides an interface to the
services of the "Time Estimator”. The Time Estimator requests information from the Job Prediction
module (data and time requirements of the job), the Monitoring Services (current computationa load
on the Grid), and the Replica Optimiser (cost of data retrieval) to calculate an approximate time for job
execution. When the application receives the execution time estimate, it uses that information to
schedule the execution of the job on an application level, based on the cost of the job, the user
submitting the job, the status of its job queue, etc. Of course the Grid application could aso decide to
refuse to schedule the job, or just to send the time/cost estimate back to the local application for
approval. For more precise estimates, the Time Estimator could also contact the Load Balancer (see
below).

In order to decide on which site to schedule the job, the Load Balancer enters into a negotiation
process with the Replica Optimiser. The Load Balancer first uses the constraints given in the JDL job
description (such as memory requirements, software library availability, etc.) to select a set of
"possible sites’ for job execution. It then requests information from the Fabric Monitoring service and
the Job Prediction service in order to calculate the computation cost for job execution on each of these
possible sites. It also sends the list of possible sites to the Replica Optimiser, so that the optimiser can
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use information from the Network Monitoring service and the Replica Catalog to calculate the
minimum cost of staging/using/creating the required data at each of the possible sites. The Replica
Optimiser then provides this information to the Load Baancer, so that the Balancer can schedule the
job at the site with the lowest overal cost. (The "negotiation” between the Load Balancer and the
Replica Optimiser given above is highly ssimplified, and implies a full search of the available search
space, to achieve a globa minimum. Such an exhaustive search may not be possible or be simply
inefficient, in which case more complicated forms of negotiation may be required. Further discussions
with WPL1 are required here.)

The Load Baancer then asks the Replica Optimiser to stage al required files to the site selected for
execution. Once the files have been staged, the Load Balancer dispatches the job for execution to the
selected site, using the Remote Job Execution service.

During job execution, the navigational access within the job causes it to demand a set of data which is
not available in the local database. The Replica Optimiser catches the exception thrown by the
database, and remedies the situation by either opening the data for WAN access on a remote site,

copying the data locally to create a temporary/permanent replica, or asking the scheduler to stop the
job and restart it (from the beginning) on another site. (The latter might be the case if ajob on aTier 2
site say, wants to start accessing Raw data, in which case restarting the job on a Tier 0 or 1 site, would
probably be more advisable than moving Raw data to the Tier 2 site)) . Certainly the "navigational”

case can aso be handled by the Replica Manager. However, since the input data set is not known in
advance, no explicit optimisation techniques concerning the optimal replica selection can be applied.
Also apossible estimation about the access time for this job cannot be made. The only possibility for
optimisation would be to deliver the requested files from a "cache'.

Once the job has reached completion, the Replica Optimiser is responsible for deleting any temporary
replicas created for the execution of the job. (Deletion also implies the deregistering of the data from
the local database).

5.5.6. Simulating Grid Query Optimisation

A further am of WP2 is to build a simulated DataGrid environment, and to attempt to optimise data
access within such an environment. More specificaly, this smulator has the following goas:

To build a system that can redlisticaly ssimulate a Grid environment, in which multiple
autonomous resources must be managed coherently. The model will include smulations of the
main parts of the architecture components discussed above. We will smulate a "smple"
application requesting a set of logical files. We will aso smulate major parts of the Replica
Manager and the Grid Scheduler to study and optimise the complex "negotiation process'
between these components. In particular, we plan to smulate optimal selection of replicas.
Based on access patterns, a further goal is to study the impact of "automatically” creating data
replicas between sites.

The simulator will help testing different algorithms and heuristics for making such replication
decisions, based on their ability for optimising globally the use of data resources (disk arrays
and tape pools) on the Grid.

Additiona goals in building the smulator include:

To study the effects of loca policy decisions on the overall working of the Grid system. For
instance, what is the impact of reducing the disk quota for a certain user community? How
shall auser community with ahigh priority be handled?
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To validate the design and the interfaces of the different Grid components.

A final god is that the Replica Optimiser - initially a smulator only - is a software component which
is part of the Replica Manager. This additiona software component uses monitoring and performance
information and optimises replica selection based on current performance parameters and predictions
in the Data Grid.

It is beyond the scope of this document to describe the specifications of the simulator. Such
specifications will be given in due course in another document. At this time a preliminary Grid
environment simulator has aready been built using Belief Desire Intention (BDI)-based software
agents. A first prototype of this smulator was presented in [R3].
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6. SERVICE API'S

6.1. INTRODUCTION

The following services described in this section will be provided by WP2. The detailed design of each
service was described in Chapter 5.

The services are:
GDMP
FileCopier *
ReplicaCatalog *
ReplicaM anager *
SQL Database *
Servicelndex *
ReplicaSelection
ReplicaConsistency

We currently only have detailed API’s worked out for the services marked with a*. Note that GDMP
provides command line tools and no programming language API’s.

6.2. GDMP

6.2.1. Interfacing GDMP

In contrast to other services in this document, GDMP does not provide programming language API's
but command line tools.

6.3. FILECOPIER

The FileCopier Serviceis alow level service with asimple interface. (Note that an application should
use the ReplicaManager APl which in turn uses the FileCopier and updates ReplicaCatal 0gs).

6.3.1. API
copyFile(TransportFileName source, TransportFileName destination): Status
This function also alows for third party transfer.
setTransferParameter s(timeout, parallel, striped, buffersize, restartOnFailure)

6.3.2. Protocols

The GridFTP protocol will be used.

6.3.3. Services needed

StorageElement: for holding physicd files

Monitoring, Accounting and Authorisation
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6.3.4. Constraints and assumptions
None.

6.3.5. Open issues
None

6.4. REPLICACATALOG

6.4.1. Protocols and API's

In order to achieve maximum flexibility we decouple transport protocol, query mechanism, and
database backend technology. This allows the implementation of a ReplicaCatalog server using
multiple database technologies such as RDBMSs, LDAP-based databeses, or flat files. Lean and
narrow API’s and protocols between client and server are required. This excludes the use of
mechanisms specific to a particular database or query technology, such as SQL or LDAP query. We
propose to use GSl-enabled HTTPS for transport, and XML for input/output data representation. Both
HTTPS and XML are the most widely used industry standards for this type of problem. We are
currently planning to use servlets to implement the HTTPS interface to the databases.

6.4.2. API

It will be the Replica Manager that uses the Replica Catalog API. However, experienced users or other
Grid toals like the Grid Scheduler might also have direct access to the Replica Catalog. Both logical
and physical files can carry additional meta data in the form of "attributes’. Logical file attributes may
include items such as filesize, CRC check sum, file type and file creation timestamp. Physical file
atributes may include a "master” flag as well as catalog insertion and update timestamps. Additional
standard attributes may be defined later.

add/deletelogical FileName(L ogical FileName)
Adds alogical file in the replica catalog.
add/del etePhysical FileName(L ogicalFileName, Physical FileName)
getPhysicalFileNames(Logical FileName)
Gets names of all physical files belonging to alogicd file.
add/deletelogical FileAttribute (LogicalFilename, AttributeName, AttributeValue)
getLogicalFileAttributes (LogicalFileName): List of attribute/value pairs
add/deletePhysical FileAttribute (PhysicalFileName, AttributeName, AttributeValue)
getPhysicalFileAttributes (PhysicalFileName): List of attribute/value pairs

6.4.3. Protocols

XML or URL encoding over https.

6.4.4. Services needed
Globus Replica Catalog (based on LDAP) and SQL DatabaseService.
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6.4.5. Constraints and assumptions
None.

6.4.6. Open issues

We are interested in discussing what precisely a file collection is, whether collections are useful and
how they could be used.

6.5. REPLICAMANAGER

6.5.1. API
The API includes the following functions:

addPhysicalFileName(L ogicalFileName, PhysicalFileName)

Enters the physical file as areplica of the logical file in the ReplicaCatalog, and assigns
appropriate file attributes. If the logica file name does not yet exist, the physical fileis marked
as "master”, otherwise as "replica’. This method does not include any data movement. In other
words, this method delegates to ReplicaCatal og.addPhysical FileName(...) method, followed
by ReplicaCatal og.setFileAttributes(...)

deletePhysicalFileName(L ogicalFileName, PhysicalFileName)

Removes the association from the given LFN to the given PFN from the ReplicaCatalog and
tells the SE holding the physicdl file that it is no more needed.

getPhysical FileNames(L ogical FileName)

Returnsthe list of all known replicas of the logical file name. In other words, ssimply delegates
to ReplicaCatal og.getPhysicalFileNames(...), possibly automatically following redirections.

copy(PhysicalFileName source, PhysicalFileName destination, String protocol): Status

This method sel ects an appropriate file transport protocol, unless explicitly specified. Next, it
determines the necessary transport file names for the selected protocol. Finaly, it then
delegates to the FileCopier.copyFile( TransportFileName source, TransportFileName
destination) method, in order to copy afile from one StorageElement to another. Note that
destination can a so includes non SE locations such as localhost.

copyAndAddPhysical File(Physical FileName source, Physical FileName destination,
LogicalFileName Ifn, String protocol): Status

Chains together ReplicaManager.copy(...) and ReplicaManager.addPhysical FileName(..) as
one reliable atomic transaction. In other words, afileis copied from source to destination, and
only if thisis done successfully, the destination file is entered into the ReplicaCatalog as being
areplicaof thelogical file.

generatePhysical FileName(Logical FileName filename, Physical FileNamePattern)

Generates a PhysicalFileName satisfying Physical FileNamePattern. Selects a StorageElement
and delegates the name generation to it. PhysicalFileNamePattern specifies restrictions on the
legal PFNs to be returned. An empty pattern indicates that the user is happy with any PFN. A
pattern can specify alist of suitable SEs and desired directory prefixes to be prepended to
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generated names. Additional input parameters like filesize and access rights may be added
later viaa call to set attributes.

estimateCostF or Copy(Physical FileName source, Physical FileName destination,
String protocol): Time

This method selects an appropriate file transfer protocol, unless explicitly specified. It then
estimates the time that copy(..) would take.

getL ocationOfBestReplica (Logical FileName): PhysicalFileName
Based on cost functions (to be defined), the PhysicalFileName of the best replicais returned.
getBestPhysicalFileName (PhysicalFileNameList, ProtocolList): PhysicalFileName

Returns the best physical file name and filter the output based on certain protocal. A list of
possible PFNs s provided as an input parameter and the Replica Manager selects the best
location based on performance information.

getTransportFileName (Physical FileName, Protocol): TransportFileName
Returns the TFN for a given protocol.
getPosixFileName (TranportFileName): filename

Returns a conventional POSIX file name that can be used to open afile using a standard
POSIX open rather than Grid tools.

6.5.2. Protocols
To be decided. Potentia candidates: LDAP, Soap/https, cgi/servlet over https, and many more

6.5.3. Services needed

ReplicaCatalog, for storage and retrieval of metadata.
StorageElement: for physica transport and disk pool management
IMS: for monitoring information lookup

Accounting for: Smart decisions in replica placement and selection

6.5.4. Constraints and assumptions
None.

6.5.5. Open Issues

Note that in this APl we do not add the notion of collections. We are interested in user requirements
related to file collections. Note that in response to user requirements a LFN is defined very liberaly: It
consists of a Ifn://[<hostname>, followed by a "/" separator, followed by any arbitrary application
specific string. Because arbitrary strings do not necessarily follow directory path conventions, a
ReplicaCatalog does not and cannot associate hierarchical tree semantics with a LFN. Hence a file
collection cannot implicitly be modelled as the set of files contained within a LFN "directory”. As can
be seen, the freedom of allowing arbitrary strings does have drawbacks, as it prohibits interpretation as
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directory paths. If applications require LFNs with directory path structure, then the LFN conventions
may need to be revised.

6.6. SQLDATABASESERVICE
The SQL Database Service is described in Chapter 5.

6.6.1. Class and Object Diagram

The components involved include the following:

Client: browser, commandline, user appl. (e.g. wget, netscape)
HTTP server and servlet engine: Apache, Tomcat for load balancing
Servlet: SQLServlet + Globus CoG

SQL to XML mapper: XSQL et d

Database driver and RDBMS: JDBC + Oracle, MySQL, DB2, etc.

6.6.2. API

doHTTPGet(URL url)

Sends request with parameters indicated by URL to the SQL DatabaseService; returns HTTP
response in XML format

doHTTPPost(URL url, String body)

Sends request with parameters indicated by URL to the SQLDatabaseService, using given
message body; returns HTTP response in XML format.

6.6.3. Protocols
https, X.509 (GSI compatible)

6.6.4. Services needed

None.

6.6.5. Open issues

None

6.7. SERVICEINDEX
The Servicelndex is described in Chapter 5.

6.7.1. Class and Object Diagram

6.7.2. API

register Child(ServiceDescription)

Periodicaly used by a service to (re)announce itself as being a child of the service index.
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getChildren() : List of ServiceDescription

Returns dl child service descriptions known to the service index
getParents() : List of ServiceDescription

Returns al parent service descriptions known to the service index

6.7.3. Protocols
https, X.509 and user/password auth.

6.7.4. Services needed
SQL DatabaseService.

6.7.5. Constraints and assumptions

Some higher level broker will provide advanced search capabilities. This service does not provide
search capabilities, because such capability is domain specific, hence better implemented by some
higher level domain specific search service.

6.7.6. Open issues

None
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